Infrared Technology, Volume. 47, Issue 3, 289(2025)

Review of Lightweight Target Detection Algorithms

Baicheng YE1... Youpan ZHU1,2,*, Yongkang ZHOU1,2,3, Chenhao DUAN2,4, Yudong ZHANG1, Zhigang TAO1,2, and Zhiyu FU12 |Show fewer author(s)
Author Affiliations
  • 1Kunming Institute of Physics, Kunming 650223, China
  • 2Yunnan Key Laboratory of Low-light-level Night Vision Detection and Intelligent Visual Navigation, Kunming 650223, China
  • 3School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China
  • 4North Optoelectronic Instrument Co., Ltd., Kunming 650114, China
  • show less
    References(59)

    [1] [1] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.

    [3] [3] HAN S, Pool J, Tran J, et al. Learning both Weights and Connections for Efficient Neural Networks[J]. arXiv e-prints arXiv: 1506.026262015.

    [4] [4] Alizadeh M, Tailor S A, Zintgraf L M, et al. Prospect pruning: Finding trainable weights at initialization using meta-gradients[J]. arXiv preprint arXiv: 2202.08132, 2022.

    [5] [5] HE Y, KANG G, DONG X, et al. Soft filter pruning for accelerating deep convolutional neural networks[J]. arXiv preprint arXiv: 1808.06866, 2018.

    [6] [6] HE Y, LIU P, WANG Z, et al. Filter pruning via geometric median for deep convolutional neural networks acceleration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4340-4349.

    [7] [7] FANG G, MA X, SONG M, et al. Depgraph: towards any structural pruning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 16091-16101.

    [8] [8] GONG Y, LIU L, YANG M, et al. Compressing deep convolutional networks using vector quantization[J]. arXiv preprint arXiv: 1412.6115, 2014.

    [9] [9] Courbariaux M, Hubara I, Soudry D, et al. Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or-1[J]. arXiv preprint arXiv: 1602.02830, 2016.

    [10] [10] LI F, LIU B, WANG X, et al. Ternary weight networks[J]. arXiv preprint arXiv: 1605.04711, 2016.

    [11] [11] Lebedev V, Ganin Y, Rakhuba M, et al. Speeding-up convolutional neural networks using fine-tuned cp-decomposition[J]. arXiv preprint arXiv: 1412.6553, 2014.

    [12] [12] Kim Y D, Park E, Yoo S, et al. Compression of deep convolutional neural networks for fast and low power mobile applications[J]. arXiv preprint arXiv: 1511.06530, 2015.

    [13] [13] Novikov A, Podoprikhin D, Osokin A, et al. Tensorizing Neural Networks[J]. arXiv preprint arXiv: 1509.06569, 2015.

    [14] [14] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv: 1503.02531, 2015.

    [15] [15] CHEN Y, WANG N, ZHANG Z. DarkRank: accelerating deep metric learning via cross sample similarities transfer[J]. arXiv e-prints, arXiv: 1707.01220, 2017.

    [16] [16] Sifre L, Mallat S. Rigid-motion scattering for texture classification[J]. arXiv preprint arXiv: 1403.1687, 2014.

    [17] [17] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-105.

    [18] [18] YU F, Koltun V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015.

    [19] [19] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773.

    [20] [20] ZHU X, HU H, LIN S, et al. Deformable convnets v2: More deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.

    [21] [21] WANG W, DAI J, CHEN Z, et al. Internimage: Exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14408-14419.

    [22] [22] Gennari M, Fawcett R, Prisacariu V A. DSConv: Efficient Convolution Operator[J]. arXiv preprint arXiv: 1901.01928, 2019.

    [23] [23] LI H, LI J, WEI H, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles[J]. arXiv preprint arXiv: 2206.02424, 2022.

    [24] [24] HE X, ZHAO K, CHU X. AutoML: A survey of the state-of-the-art[J]. Knowledge-Based Systems, 2021, 212: 106622.

    [25] [25] Zoph B, Le Q V. Neural architecture search with reinforcement learning[J]. arXiv preprint arXiv: 1611.01578, 2016.

    [27] [27] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv: 1602.07360, 2016.

    [28] [28] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704.04861, 2017.

    [29] [29] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.

    [30] [30] Howard A, Sandler M, CHU G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.

    [31] [31] ZHANG X, ZHOU X, LIN M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.

    [32] [32] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131.

    [33] [33] HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.

    [34] [34] CUI C, GAO T, WEI S, et al. PP-LCNet: A lightweight CPU convolutional neural network[J]. arXiv preprint arXiv: 2109.15099, 2021.

    [35] [35] Vasu P K A, Gabriel J, Zhu J, et al. MobileOne: an improved one millisecond mobile backbone[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7907-7917.

    [36] [36] CHEN J, KAO S, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.

    [37] [37] Mehta S, Rastegari M. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer[J]. arXiv preprint arXiv: 2110.02178, 2021.

    [38] [38] Maaz M, Shaker A, Cholakkal H, et al. Edgenext: efficiently amalgamated CNN-transformer architecture for mobile vision applications[C]//European Conference on Computer Vision, 2022: 3-20.

    [39] [39] CAI H, GAN C, HAN S. Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition[J]. arXiv preprint arXiv: 2205.14756, 2022.

    [40] [40] Vasu P K A, Gabriel J, ZHU J, et al. FastViT: A fast hybrid vision transformer using structural reparameterization[J]. arXiv preprint arXiv: 2303.14189, 2023.

    [41] [41] WU B, DAI X, ZHANG P, et al. Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10734-10742.

    [42] [42] WAN A, DAI X, ZHANG P, et al. Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12965-12974.

    [43] [43] DAI X, WAN A, ZHANG P, et al. Fbnetv3: Joint architecture-recipe search using predictor pretraining[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16276-16285.

    [44] [44] XIONG Y, LIU H, Gupta S, et al. Mobiledets: Searching for object detection architectures for mobile accelerators[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3825-3834.

    [45] [45] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.

    [46] [46] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.

    [47] [47] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.

    [48] [48] Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.

    [49] [49] LI C, LI L, JIANG H, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv: 2209.02976, 2022.

    [50] [50] WANG C Y, Bochkovskiy A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.

    [52] [52] ZHANG Y, BI S, DONG M, et al. The implementation of CNN-based object detector on ARM embedded platforms[C]//2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018: 379-382.

    [53] [53] Womg A, Shafiee M J, LI F, et al. Tiny SSD: A tiny single-shot detection deep convolutional neural network for real-time embedded object detection[C]//2018 15th Conference on Computer and Robot Vision (CRV). IEEE, 2018: 95-101.

    [54] [54] LI Y, LI J, LIN W, et al. Tiny-DSOD: Lightweight object detection for resource-restricted usages[J]. arXiv preprint arXiv: 1807.11013, 2018.

    [55] [55] HU L, LI Y. Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model[C]//ICAART (2). 2021: 151-158.

    [56] [56] ZHANG Y M, LEE C C, Hsieh J W, et al. CSL-YOLO: A new lightweight object detection system for edge computing[J]. arXiv preprint arXiv: 2107.04829, 2021.

    [57] [57] GE Z, LIU S, WANG F, et al. YOLOx: Exceeding YOLO series in 2021[J]. arXiv preprint arXiv: 2107.08430, 2021.

    [58] [58] CUI M, GONG G, CHEN G, et al. LC-YOLO: a lightweight model with efficient utilization of limited detail features for small object detection[J]. Applied Sciences, 2023, 13(5): 3174.

    [59] [59] WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[J]. arXiv preprint arXiv: 2309.11331, 2023.

    [62] [62] YU G, CHANG Q, LV W, et al. PP-PicoDet: A better real-time object detector on mobile devices[J]. arXiv preprint arXiv: 2111.00902, 2021.

    [63] [63] ZHOU Q, SHI H, XIANG W, et al. DPNet: Dual-Path network for real-time object detection with lightweight attention[J]. arXiv preprint arXiv: 2209.13933, 2022.

    [64] [64] TU P, XIE X, LING M, et al. FemtoDet: an object detection baseline for energy versus performance tradeoffs[J]. arXiv preprint arXiv: 2301.06719, 2023.

    Tools

    Get Citation

    Copy Citation Text

    YE Baicheng, ZHU Youpan, ZHOU Yongkang, DUAN Chenhao, ZHANG Yudong, TAO Zhigang, FU Zhiyu. Review of Lightweight Target Detection Algorithms[J]. Infrared Technology, 2025, 47(3): 289

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 6, 2023

    Accepted: Apr. 18, 2025

    Published Online: Apr. 18, 2025

    The Author Email: ZHU Youpan (87029830@qq.com)

    DOI:

    Topics