Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 2, 138(2022)

Research progress of polyarylate thermotropic liquid crystal polymers

LI Shan1,2, CHEN Hong1,2, and GUO Jin-bao1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(100)

    [1] [1] SHIBAEV V P, BOBROVSKY A Y. Liquid crystalline polymers: development trends and photocontrollable materials [J]. Russian Chemical Reviews, 2017, 86(11): 1024-1072.

    [3] [3] HUSSEIN M A, ABDEL-RAHMAN M A, ASIRI A M, et al. Review on: liquid crystalline polyazomethines polymers. Basics, syntheses and characterization [J]. Designed Monomers and Polymers, 2012, 15(5): 431-463.

    [4] [4] CHENG H K F, BASU T, SAHOO N G, et al. Current advances in the carbon nanotube/thermotropic main-chain liquid crystalline polymer nanocomposites and their blends [J]. Polymers, 2012, 4(2): 889-912.

    [5] [5] CHEN Y F, KIM Y S, TILLMAN B W, et al. Advances in materials for recent low-profile implantable bioelectronics [J]. Materials, 2018, 11(4): 522.

    [6] [6] CHEN L, RUAN C, YANG R, et al. Phosphorus-containing thermotropic liquid crystalline polymers: a class of efficient polymeric flame retardants [J]. Polymer Chemistry, 2014, 5(12): 3737-3749.

    [7] [7] NAWAZ A A, KHAN W T, ULUSOY A C. Organically packaged components and modules: recent advancements for microwave and mm-wave applications [J]. IEEE Microwave Magazine, 2019, 20(11): 49-72.

    [8] [8] KHAN M U A, RAAD R, TUBBAL F, et al. Bending analysis of polymer-based flexible antennas for wearable, general IoT applications: a review [J]. Polymers, 2021, 13(3): 357.

    [9] [9] JI Y, BAI Y, LIU X B, et al. Progress of liquid crystal polyester (LCP) for 5G application [J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(4): 160-174.

    [10] [10] TENGSUTHIWAT J, SANJAY M R, SIENGCHIN S, et al. 3D-MID technology for surface modification of polymer-based composites: a comprehensive review [J]. Polymers, 2020, 12(6): 1408.

    [11] [11] BJYKA , CDKK , CSHK. Effect of modified carbon nanotube on physical properties of thermotropic liquid crystal polyester nanocomposites[J]. European Polymer Journal, 2009, 45( 2):316-324.

    [12] [12] PISITSAK P, MAGARAPHAN R, JANA S C. Electrically conductive compounds of polycarbonate, liquid crystalline polymer, and multiwalled carbon nanotubes [J]. Journal of Nanomaterials, 2012, 2012: 642080.

    [13] [13] STUPARU M C, XU J H, HALL H K JR. Free-radical chain generation of ketene during the synthesis of liquid crystalline aromatic polyesters [J]. Tetrahedron Letters, 2009, 50(49): 6743-6744.

    [14] [14] DE KORT G W, SAIDI S, HERMIDA-MERINO D, et al. Reactive processing route to thermotropic polyesters with a low processing temperature and enhanced relaxation time [J]. Macromolecules, 2021, 54(3): 1401-1413.

    [15] [15] TJONG S C. Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymers and thermoplastics [J]. Materials Science and Engineering: R: Reports, 2003, 41(1/2): 1-60.

    [16] [16] PADIAS A B, HALL H K JR. Mechanism studies of LCP synthesis [J]. Polymers, 2011, 3(2): 833-845.

    [17] [17] ZENG L X, LI R S, CHEN P, et al. Synthesis and characterization of thermotropic liquid crystalline polyarylate with ether ether ketone segments in the main chain [J]. Journal of Applied Polymer Science, 2016, 133(32): 43800.

    [18] [18] POTADAR S M, MALI A S, WAGHMODE K T, et al. Repurposing n-butyl stannoic acid as highly efficient catalyst for direct amidation of carboxylic acids with amines [J]. Tetrahedron Letters, 2018, 59(52): 4582-4586.

    [19] [19] MATYJASZEWSKIK, MLLER M. Polymer Science: a Comprehensive Reference [M]. Amsterdam: Elsevier, 2012: 259-285.

    [20] [20] XU X X, CHAO C Y, YAO X J. Synthesis, structure, and mesomorphism of novel liquid crystalline acrylate monomers and polymers [J]. Molecular Crystals and Liquid Crystals, 2016, 624(1): 1-10.

    [21] [21] PARK J R, LEE E J, YOON D S, et al. Synthesis and properties of semi-flexible liquid crystalline polyesters with rigid lateral group [J]. Elastomers and Composites, 2013, 48(4): 306-311.

    [22] [22] WANG R, ZHENG Y J, LI X F, et al. Optically active helical vinylbiphenyl polymers with reversible thermally induced stereomutation [J]. Polymer Chemistry, 2016, 7(18): 3134-3144.

    [23] [23] YANG M, LIU Z, LI X T, et al. Influence of flexible spacer length on self-organization behaviors and photophysical properties of hemiphasmidic liquid crystalline polymers containing cyanostilbene [J]. European Polymer Journal, 2020, 123: 109459.

    [24] [24] SHOJI Y, ISHIGE R, HIGASHIHARA T, et al. Thermotropic liquid crystalline polyimides with siloxane linkages: synthesis, characterization, and liquid crystalline behavior [J]. Macromolecules, 2010, 43(2): 805-810.

    [25] [25] ALY K I, ELKHAWAGA A M, HUSSEIN M A, et al. Liquid crystalline polymers XI. Main chain thermotropic poly(arylidene-ether)s containing 4-methyl-cyclohexanone moiety linked with polymethylene spacers [J]. Liquid Crystals, 2013, 40(6): 711-725.

    [26] [26] NELSON A M, FAHS G B, MOORE R B, et al. High-performance segmented liquid crystalline copolyesters [J]. Macromolecular Chemistry and Physics, 2015, 216(16): 1754-1763.

    [27] [27] LU W Z, WEI C, GAO Q S. Synthesis and properties of thermotropic liquid crystalline polyesters with flexible polymethylene spacer [C]//Proceedings of 2019 International Symposium on Liquid Crystal Science and Technology. Kunming, 2009: 126-131.

    [28] [28] LENZ R W. Synthesis and properties of thermotropic liquid crystal polymers with main chain mesogenic units [J]. Polymer Journal, 1985, 17(1): 105-115.

    [29] [29] MULANI K, MOMIN M, GANJAVE N, et al. Thermotropic liquid crystalline polyesters derived from bis-(4-hydroxybenzoyloxy)-2-methyl-1,4-benzene and aliphatic dicarboxylic acid chlorides [J]. Bulletin of Materials Science, 2015, 38(5): 1301-1308.

    [30] [30] MANURKAR N, MORE S, MULANI K, et al. Thermotropic liquid crystalline polyesters derived from 2-chloro hydroquinone [J]. Journal of Chemical Sciences, 2017, 129(9): 1461-1468.

    [31] [31] KAN K, KANEKO D, KANEKO T. Polarized emission of wholly aromatic bio-based copolyesters of a liquid crystalline nature [J]. Polymers, 2011, 3(2): 861-874.

    [32] [32] OLADOYINBO F O, LEWIS D F, BLUNDELL D J, et al. A thermotropic poly(ether ketone) based on the p-quaterphenyl unit: evidence for a smectic C phase [J]. Polymer Chemistry, 2020, 11(1): 75-83.

    [33] [33] UCHIMURA M, ISHIGE R, SHIGETA M, et al. Synthesis and properties of thermotropic liquid-crystalline polyesters containing 9,10-diphenylanthracene moiety in the main chain [J]. Research on Chemical Intermediates, 2013, 39(1): 403-414.

    [34] [34] WILSENS C H R M, NOORDOVER B A J, RASTOGI S. Aromatic thermotropic polyesters based on 2,5-furandicarboxylic acid and vanillic acid [J]. Polymer, 2014, 55(10): 2432-2439.

    [35] [35] HEIFFERON K V, SPIERING G A, TALLEY S J, et al. Synthesis and characterization of a nematic fully aromatic polyester based on biphenyl 3,4’-dicarboxylic acid [J]. Polymer Chemistry, 2019, 10(31): 4287-4296.

    [36] [36] ROMO-URIBE A, REYES-MAYER A, CALIXTO-RODRIGUEZ M, et al. Synchrotron scattering and thermo-mechanical properties of high performance thermotropic polymer. A multi-scale analysis and structure-property correlation [J]. Polymer, 2018, 153: 408-421.

    [37] [37] PARK G T, LEE W J, CHANG J H, et al. Dependence of the physical properties and molecular dynamics of thermotropic liquid crystalline copolyesters on p-hydroxybenzoic acid content [J]. Polymers, 2020, 12(1): 198.

    [38] [38] WILSENS C H R M, VERHOEVEN J M G A, NOORDOVER B A J, et al. Thermotropic polyesters from 2,5-furandicarboxylic acid and vanillic acid: synthesis, thermal properties, melt behavior, and mechanical performance [J]. Macromolecules, 2014, 47(10): 3306-3316.

    [39] [39] WEI P, WANG Y Z, WANG Y P, et al. Synthesis and properties of thermotropic poly(oxybenzoate-co-oxynaphthoate) copolyester modified by a third AB type monomer [J]. Journal of Macromolecular Science, Part B: Physics, 2020, 59(4): 197-212.

    [40] [40] MONDSCHEIN R J, DENNIS J M, LIU H Y, et al. Synthesis and characterization of amorphous bibenzoate(Co)polyesters: permeability and rheological performance [J]. Macromolecules, 2017, 50(19): 7603-7610.

    [41] [41] HEIFFERON K V, MONDSCHEIN R J, TALLEY S J, et al. Tailoring the glassy mesophase range of thermotropic polyesters through copolymerization of 4,4’-bibenzoate and kinked isomer [J]. Polymer, 2019, 163: 125-133.

    [42] [42] BABACAN V, AKSOY S, YERLIKAYA Z, et al. Thermal and morphological properties of thermotropic liquid-crystalline copolyesters containing poly(ethylene terephthalate), 4-hydroxyphenylacetic acid and main-chain rigid aromatic units [J]. Polymer International, 2010, 59(6): 749-755.

    [43] [43] LIU P Q, WU T, YE G D, et al. Novel polyarylates containing aryl ether units: synthesis, characterization and properties [J]. Polymer International, 2013, 62(5): 751-758.

    [44] [44] MANE S, RAJAN C R, PONRATHNAM S, et al. Synthesis and characterization of thermotropic liquid crystalline polyimides [J]. Bulletin of Materials Science, 2015, 38(6): 1553-1559.

    [45] [45] ALI M A, SHIMOSEGAWA H, NAG A, et al. Synthesis of thermotropic polybenzoxazole using 3-amino-4-hydroxybenzoic acid [J]. Journal of Polymer Research, 2017, 24(12): 214.

    [46] [46] DANG X D, WEI C, LIU H X, et al. Preparation, morphology, and structure of thermotropic liquid crystalline polyester-imide/phenol-formaldehyde resin blends [J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2012, 49(5): 378-384.

    [47] [47] VLAD-BUBULAC T, HAMCIUC C. Synthesis and properties of new aromatic copolyesters containing phosphorous cyclic bulky groups [J]. Polymer Engineering and Science, 2010, 50(5): 1028-1035.

    [48] [48] DEBERDEEV T R, AKHMETSHINA A I, KARIMOVA L K, et al. Heat-resistant polymer materials based on liquid crystal compounds [J]. Polymer Science, Series C, 2020, 62(2): 145-164.

    [49] [49] ULA S W , TRAUGUTT N A , VOLPE R H , et al. Liquid crystal elastomers: an introduction and review of emerging technologies[J]. Liquid Crystals Reviews, 2018, 6(1):78-107.

    [50] [50] WEI P, CAKMAK M, CHEN Y W, et al. The influence of bisphenol AF unit on thermal behavior of thermotropic liquid crystal copolyesters [J]. Thermochimica Acta, 2014, 586: 45-51.

    [51] [51] LI Z P, GARZA P A G, BAER E, et al. Modification of rheological properties of a thermotropic liquid crystalline polymer by melt-state reactive processing [J]. Polymer, 2012, 53(15): 3245-3252.

    [52] [52] NGUYEN Q V, BAE J Y, LE H S. One-pot synthesis of soluble wholly aromatic liquid crystalline copoly(ester amide)s with high thermal and dimensional stability [J]. Chemical Engineering Communications, 2020, 207(10): 1358-1367.

    [53] [53] YANG R, CHEN L, RUAN C, et al. Chain folding in main-chain liquid crystalline polyesters: from pi-pi stacking toward shape memory[J]. Journal of Materials Chemistry C, 2014, 2(30):6155-6164.

    [54] [54] QIAN L J, ZHI J G, TONG B, et al. Synthesis and characterization of main-chain liquid crystalline copolyesters containing phosphaphenanthrene side-groups [J]. Polymer, 2009, 50(20): 4813-4820.

    [55] [55] YANG R, CHEN L, JIN R, et al. Main-chain liquid crystalline copolyesters with a phosphorus-containing non-coplanar moiety [J]. Polymer Chemistry, 2013, 4(2): 329-336.

    [56] [56] BIAN X C, CHEN L, WANG J S, et al. A novel thermotropic liquid crystalline copolyester containing phosphorus and aromatic ether moity toward high flame retardancy and low mesophase temperature [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48(5): 1182-1189.

    [57] [57] YANG R, CHEN L, RUAN C, et al. Chain folding in main-chain liquid crystalline polyesters: from π-π stacking toward shape memory [J]. Journal of Materials Chemistry C, 2014, 2(30): 6155-6164.

    [58] [58] PARK G T, CHANG J H, LIM A R. Thermotropic liquid crystalline polymers with various alkoxy side groups: thermal properties and molecular dynamics [J]. Polymers, 2019, 11(6): 992.

    [59] [59] GUAN Q B, NORDER B, DINGEMANS T J. Flexible all-aromatic polyesterimide films with high glass transition temperatures [J]. Journal of Applied Polymer Science, 2017, 134(18): 44774.

    [60] [60] VITA F, ADAMO F C, PISANI M, et al. Liquid crystal thermosets. A new class of high-performance materials [J]. Liquid Crystals, 2020, 47(13): 2016-2026.

    [61] [61] RUAN K P, ZHONG X, SHI X T, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review [J]. Materials Today Physics, 2021, 20: 100456.

    [62] [62] GAVRIN A J, DOUGLAS E P. Isothermal curing of acetylene functionalized liquid crystalline thermoset monomers [J]. Macromolecules, 2001, 34(17): 5876-5884.

    [63] [63] KNIJNENBERG A, WEISER E, STCLAIR T L, et al. Synthesis and characterization of aryl ethynyl terminated liquid crystalline oligomers and their cured polymers [J]. Macromolecules, 2006, 39(20): 6936-6943.

    [64] [64] IQBAL M, NORDER B, MENDES E, et al. All-aromatic liquid crystalline thermosets with high glass transition temperatures [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(5): 1368-1380.

    [65] [65] DINGEMANS T J, IQBAL M. Liquid crystal thermoset resins for high temperature composites and adhesives [J]. Plastics, Rubber and Composites, 2010, 39(3/5): 189-194.

    [66] [66] IQBAL M, DINGEMANS T J. High-performance composites based on all-aromatic liquid crystal thermosets [J]. Composites Science and Technology, 2011, 71(6): 863-867.

    [67] [67] GUAN Q B, NORDER B, CHU L Y, et al. All-aromatic (AB)n-multiblock copolymers via simple one-step melt condensation chemistry [J]. Macromolecules, 2016, 49(22): 8549-8562.

    [68] [68] GUAN Q B, PICKEN S J, SHEIKO S S, et al. High-temperature shape memory behavior of novel all-aromatic (AB)n-multiblock copoly(ester imide)s [J]. Macromolecules, 2017, 50(10): 3903-3910.

    [69] [69] DAI Y H, BI X Y, DINGEMANS T J, et al. High-performance all-aromatic liquid crystalline esteramide-based thermosets [J]. High Performance Polymers, 2019, 31(6): 631-639.

    [70] [70] TANG Y F, YUAN L, LIANG G Z, et al. Facile strategy and mechanism of preparing high performance intrinsic flame retarding foams based on reactive end-capped liquid crystalline all-aromatic polyester without incorporating additional flame retardants [J]. Composites Part B: Engineering, 2020, 181: 107554.

    [73] [73] MCKEEN L W. Permeability Properties of Plastics and Elastomers [M]. Amsterdam: Elsevier, 2017: 41-60.

    [74] [74] FARRELL B, LAWRENCE M S. The processing of liquid crystalline polymer printed circuits [C]//Proceedings of the 52nd- Electronic Components and Technology Conference 2002. (Cat. No.02CH37345-). San Diego: IEEE, 2002: 667-671.

    [75] [75] BHAT G. Structure and Properties of High-Performance Fibers [M]. Duxford: Woodhead Publishing, 2017: 113-140.

    [76] [76] The Society of Fiber Science and Technology, Japan. High-Performance and Specialty Fibers [M]. New York: Springer, 2016: 171-190.

    [78] [78] WITIK R A, PAYET J, MICHAUD V,et al. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(11): 1694-1709.

    [79] [79] GANTENBEIN S, MASANIA K, WOIGK W,et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures [J]. Nature, 2018, 561(7722): 226-230.

    [80] [80] GANTENBEIN S, MASCOLO C, HOURIET C, et al. Spin-printing of liquid crystal polymer into recyclable and strong all-fiber materials [J]. Advanced Functional Materials, 2021,31(52):2104574.

    [81] [81] SULLIVAN A, SAIGAL A, ZIMMERMAN M. Investigation of liquid crystal polymer structure-property relationships between crystal orientation and dielectric behavior [J]. Journal of Physics: Conference Series, 2018, 1045: 012005.

    [82] [82] KALIA S, SHARMA V, SHARMA J K, et al. Dielectric constant/dielectric loss measurements in vectra-a, liquid crystal copolyester [J]. Research & Reviews: Journal of Physics, 2018, 7(2): 84-87.

    [83] [83] LEE W J, KWAC L K, KIM H G, et al. Thermotropic liquid crystalline copolyester fibers according to various heat treatment conditions [J]. Scientific Reports, 2021, 11(1): 11654.

    [84] [84] LIMENEH D Y, YILMA K T. Article review on vectran-super fiber from thermotropic crystals of rigid-rod polymer [J]. Journal of Engineering, 2021, 2021: 6646148.

    [85] [85] PICKEN S J, SIKKEMA D J, BOERSTOEL H, et al. Liquid crystal main-chain polymers for high-performance fibre applications [J]. Liquid Crystals, 2011, 38(11/12): 1591-1605.

    [86] [86] SHOCKEY D A, PIASCIK R S, JENSEN B J, et al. Textile damage in astronaut gloves [J]. Journal of Failure Analysis and Prevention, 2013, 13(6): 748-756.

    [87] [87] BALAGNA C, IRFAN M, PERERO S, et al. Antibacterial nanostructured composite coating on high performance Vectran fabric for aerospace structures [J]. Surface and Coatings Technology, 2019, 373: 47-55.

    [88] [88] HWANG G T, IM D, LEE S E, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers [J]. ACS Nano, 2013, 7(5): 4545-4553.

    [89] [89] JEONG J, BAE S H, MIN K S, et al. A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP) [J]. IEEE Transactions on Biomedical Engineering, 2015, 62(3): 982-989.

    [90] [90] JEONG J, BAE S H, SEO J M, et al. Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis [J]. Journal of Neural Engineering, 2016, 13(2): 025004.

    [91] [91] ASADNIA M, KOTTAPALLI A G P, SHEN Z Y, et al. Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles [J]. IEEE Sensors Journal, 2013, 13(10): 3918-3925.

    [92] [92] GWON T M, KIM C, SHIN S, et al. Liquid crystal polymer (LCP)-based neural prosthetic devices [J]. Biomedical Engineering Letters, 2016, 6(3): 148-163.

    [93] [93] RATNAYAKA K, FARANESH A Z, HANSEN M S, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters [J]. European Heart Journal, 2013, 34(5): 380-389.

    [94] [94] YAO W, SCHAEFFTER T, SENEVIRATNE L, et al. Developing a magnetic resonance-compatible catheter for cardiac catheterization [J]. Journal of Medical Devices, 2012, 6(4): 041002.

    [95] [95] RAO M V, MADHAV B T P, ANILKUMAR T, et al. Circularly polarized flexible antenna on liquid crystal polymer substrate material with metamaterial loading [J]. Microwave and Optical Technology Letters, 2020, 62(2): 866-874.

    [96] [96] LI W, LAN Y, WANG H P, et al. Microwave polarizer based on complementary split ring resonators frequency-selective surface for conformal application [J]. IEEE Access, 2021, 9: 111383-111389.

    [97] [97] HAJISAEID E, DERICIOGLU A F, AKYURTLU A. All 3-D printed free-space setup for microwave dielectric characterization of materials [J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 1877-1886.

    [98] [98] DIMITRIOU N, LEONTARIS L, VAFEIADIS T, et al. Fault diagnosis in microelectronics attachment via deep learning analysis of 3-D laser scans [J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5748-5757.

    [99] [99] NI J, HONG J S. Compact varactor-tuned microstrip high-pass filter with a quasi-elliptic function response [J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(11): 3853-3859.

    [100] [100] KAO H L, CHO C L, ZHANG X Y, et al. Bending effect of an inkjet-printed series-fed two-dipole antenna on a liquid crystal polymer substrate [J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1172-1175.

    [101] [101] RIDA A, MARGOMENO A, LEE J S, et al. Integrated wideband 2-D and 3-D transitions for millimeter-wave RF front-ends [J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 1080-1083.

    [102] [102] KIMIONIS J, GEORGIADIS A, DASKALAKIS S N, et al. A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates [J]. Nature Electronics, 2021, 4(6): 439-446.

    [103] [103] JILANI S F, ABBASI Q H, KHAN Z U, et al. A Ka-band antenna based on an enhanced Franklin model for 5G cellular networks [J]. Microwave and Optical Technology Letters, 2018, 60(6): 1562-1566.

    [104] [104] RAHIMIAN A, ABBASI Q H, ALOMAINY A, et al. A low-profile 28-GHz Rotman lens-fed array beamformer for 5G conformal subsystems [J]. Microwave and Optical Technology Letters, 2019, 61(3): 671-675.

    Tools

    Get Citation

    Copy Citation Text

    LI Shan, CHEN Hong, GUO Jin-bao. Research progress of polyarylate thermotropic liquid crystal polymers[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 138

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 22, 2021

    Accepted: --

    Published Online: Mar. 1, 2022

    The Author Email:

    DOI:10.37188/cjlcd.2021-0296

    Topics