Chinese Optics Letters, Volume. 20, Issue 8, 081403(2022)
Transfer of laser frequency from 729 nm to 1.5 µm with precision at the level of 10−20
[1] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, U. Sterr. 1.5 µm lasers with sub-10 mHz linewidth. Phys. Rev. Lett., 118, 263202(2017).
[2] E. Oelker, R. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. Robinson, G. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, J. Ye. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics, 13, 714(2019).
[3] J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, J. Ye. Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift. Optica, 6, 240(2019).
[4] C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, P.-E. Pottie. A clock network for geodesy and fundamental science. Nat. Commun., 7, 12443(2016).
[5] J. Grotti, S. Koller, S. Vogt, S. Hafner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, D. Calonico. Geodesy and metrology with a transportable optical clock. Nat. Phys., 14, 437(2018).
[6] Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature, 591, 564(2021).
[7] L.-S. Ma, P. Jungner, J. Ye, J. L. Hall. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett., 19, 1777(1994).
[8] K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, H. Schnatz. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, 336, 441(2012).
[9] S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, R. Holzwarth. Optical-frequency transfer over a single-span 1840 km fiber link. Phys. Rev. Lett., 111, 110801(2013).
[10] S. M. Raupach, A. Koczwara, G. Grosche. Brillouin amplification supports 1 × 10−20 uncertainty in optical frequency transfer over 1400 km of underground fiber. Phys. Rev. A, 92, 021801(2015).
[11] L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams. Optical frequency synthesis and comparison with uncertainty at the 10−19 level. Science, 303, 1843(2004).
[12] H. R. Telle, B. Lipphardt, J. Stenger. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B, 74, 1(2002).
[13] D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, Y. Le Coq. Spectral purity transfer between optical wavelengths at the 10−18 level. Nat. Photonics, 8, 219(2014).
[14] Y. Yao, Y. Jiang, H. Yu, Z. Bi, L. Ma. Optical frequency divider with division uncertainty at the 10−21 level. Nat. Sci. Rev., 3, 463(2016).
[15] E. Benkler, B. Lipphardt, T. Puppe, R. Wilk, F. Rohde, U. Sterr. End-to-end topology for fiber comb based optical frequency transfer at the 10−21 level. Opt. Express, 27, 36886(2019).
[16] J. Stenger, H. Schnatz, C. Tamm, H. R. Telle. Ultraprecise measurement of optical frequency ratios. Phys. Rev. Lett., 88, 073601(2002).
[17] K. Cui, S. Chao, C. Sun, S. Wang, P. Zhang, Y. Wei, J. Cao, H. Shu, X. Huang. Evaluation of the performance of a 40Ca+ − 27Al+ optical clock(2020).
[18] B. Zhang, Y. Huang, Y. Hao, H. Zhang, M. Zeng, H. Guan, K. Gao. Improvement in the stability of a 40Ca+ ion optical clock using the Ramsey method. J. Appl. Phys., 128, 143105(2020).
[19] Y. Huang, B. Zhang, M. Zeng, Y. Hao, H. Zhang, H. Guan, Z. Chen, M. Wang, K. Gao. A liquid nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3 × 10−18(2021).
[20] J. Zhang, K. Deng, J. Luo, Z. Lu. Direct laser cooling Al+ ion optical clocks. Chin. Phys. Lett., 34, 050601(2017).
[21] K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, H. Inaba. Multi-branch fiber comb with relative frequency uncertainty at 10−20 using fiber noise difference cancellation. Opt. Express, 26, 8831(2018).
Get Citation
Copy Citation Text
Pengcheng Fang, Huanyao Sun, Yan Wang, Yanqi Xu, Qunfeng Chen, "Transfer of laser frequency from 729 nm to 1.5 µm with precision at the level of 10−20," Chin. Opt. Lett. 20, 081403 (2022)
Category: Lasers, Optical Amplifiers, and Laser Optics
Received: Jan. 30, 2022
Accepted: Apr. 28, 2022
Published Online: May. 26, 2022
The Author Email: Qunfeng Chen (qfchen@apm.ac.cn)