Chinese Journal of Lasers, Volume. 48, Issue 19, 1914002(2021)

Optical Terahertz Radiation Sources and Terahertz Application in Traumatic Brain Injury

Degang Xu1,2,3, Yuye Wang1,2,3、*, Changhao Hu1,2,3, Chao Yan1,2,3, Kai Chen1,2,3, Zelong Wang1,2,3, Gang Nie1,2,3, Jiaxin Zhang1,2,3, and Jianquan Yao1,2,3
Author Affiliations
  • 1Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
  • 3Micro Optical Electronic Mechanical System Technology Laboratory, Tianjin University, Tianjin 300072, China
  • show less
    References(60)

    [1] Pawar A Y, Sonawane D D, Erande K B et al. Terahertz technology and its applications[J]. Drug Invention Today, 5, 157-163(2013).

    [2] Grootendorst M R, Fitzgerald A J, de Koning S G B et al. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue[J]. Biomedical Optics Express, 8, 2932-2945(2017).

    [3] El-Shenawee M, Vohra N, Bowman T et al. Cancer detection in excised breast tumors using terahertz imaging and spectroscopy[J]. Biomedical Spectroscopy and Imaging, 8, 1-9(2019).

    [4] Azab M Y, Hameed M F O, Nasr A M et al. Highly sensitive metamaterial biosensor for cancer early detection[J]. IEEE Sensors Journal, 21, 7748-7755(2021).

    [5] Lee D K, Kang J H, Lee J S et al. Highly sensitive and selective sugar detection by terahertz nano-antennas[J]. Scientific Reports, 5, 15459(2015).

    [6] Yang X, Shi J, Wang Y Y et al. Label-free bacterial colony detection and viability assessment by continuous-wave terahertz transmission imaging[J]. Journal of Biophotonics, 11, e201700386(2018).

    [7] Cao E D, Yu Y, Song C B et al. Method of food and drug detection under shielding of common wrappings based on terahertz time domain spectroscopy[J]. Laser & Optoelectronics Progress, 58, 0112002(2021).

    [8] Tang Z M, Deng H, Liu Q C et al. Quantitative analysis of low-concentration α-HMX based on terahertz spectroscopy[J]. Analytical Methods, 12, 5684-5690(2020).

    [9] Li K D, Chen X Q, Zhang R et al. Classification for glucose and lactose terahertz spectrums based on SVM and DNN methods[J]. IEEE Transactions on Terahertz Science and Technology, 10, 617-623(2020).

    [10] Zhong S C. Progress in terahertz nondestructive testing: a review[J]. Frontiers of Mechanical Engineering, 14, 273-281(2019).

    [11] Xiao Z, Yang Q, Huang J et al. Terahertz communication windows and their point-to-point transmission verification[J]. Applied Optics, 57, 7673-7680(2018).

    [12] Xie S, Li H R, Li L X et al. Survey of terahertz communication technology[J]. Journal on Communications, 41, 168-186(2020).

    [13] Nishizawa J. History and characteristics of semiconductor laser[J]. Denshi Kagaku, 14, 17-31(1963).

    [14] Kurtz S K, Giordmaine J A. Stimulated Raman scattering by polaritons[J]. Physical Review Letters, 22, 192-195(1969).

    [15] Kawase K, Sato M, Taniuchi T et al. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler[J]. Applied Physics Letters, 68, 2483-2485(1996).

    [16] Kawase K, Sato M, Nakamura K et al. Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition[J]. Applied Physics Letters, 71, 753-755(1997).

    [17] Kawase K, Shikata J I, Minamide H et al. Arrayed silicon prism coupler for a terahertz-wave parametric oscillator[J]. Applied Optics, 40, 1423-1426(2001).

    [18] Ikari T, Zhang X B, Minamide H et al. THz-wave parametric oscillator with a surface-emitted configuration[J]. Optics Express, 14, 1604-1610(2006).

    [19] Ken-Ichi K, Jun-Ichi S, Kodo K et al. Terahertz-wave parametric generation characteristics of MgO∶ LiNbO3[J]. Electronics and Communications in Japan (Part II: Electronics), 85, 22-29(2002).

    [20] Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Handbook of nonlinear optical crystals[M]. Wang J Y, Transl. 3rd ed(2009).

    [21] Sun S Q, Xia H R, Ran D G et al. The study of lattice vibration and phase transition soft mode in near stoichiometric lithium niobate crystals[J]. The Journal of Light Scattering, 18, 254-261(2006).

    [22] Murate K, Hayashi S, Kawase K. Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz[J]. Applied Physics Express, 9, 082401(2016).

    [23] Wang Y Y, Tang L H, Xu D G et al. Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal[J]. Optics Express, 25, 8926-8936(2017).

    [26] Minamide H, Ikari T, Ito H. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration[J]. The Review of Scientific Instruments, 80, 123104(2009).

    [27] Yang Z, Wang Y Y, Xu D G et al. THz wave parametric oscillator with a surface-emitted ring-cavity configuration[J]. Optics Letters, 41, 2262-2265(2016).

    [28] Wang Y Y, Ren Y C, Xu D G et al. Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal[J]. Chinese Physics B, 27, 114213(2018).

    [29] Tang L H, Xu D G, Wang Y Y et al. Efficient ring-cavity terahertz parametric oscillator with pump recycling technique[J]. IEEE Photonics Journal, 11, 18407902(2019).

    [30] Hayashi S, Nawata K, Taira T et al. Ultrabright continuously tunable terahertz-wave generation at room temperature[J]. Scientific Reports, 4, 5045(2014).

    [31] Nawata K, Hayashi S, Ishizuki H et al. Effective terahertz wave parametric generation depending on the pump pulse width using a LiNbO3 crystal[J]. IEEE Transactions on Terahertz Science and Technology, 7, 617-620(2017).

    [32] Chiu Y C, Wang T D, Zhao G et al. Discovery of phase-matched stimulated polariton scattering near 4 THz in lithium niobate[J]. Optics Letters, 42, 4-7(2017).

    [33] Moriguchi Y, Tokizane Y, Takida Y et al. High-average and high-peak output-power terahertz-wave generation by optical parametric down-conversion in MgO∶ LiNbO3[J]. Applied Physics Letters, 113, 121103(2018).

    [34] Moriguchi Y, Tokizane Y, Takida Y et al. Frequency-agile injection-seeded terahertz-wave parametric generation[J]. Optics Letters, 45, 77-80(2020).

    [35] Zheng Y M, Lee A, Spence D et al. Linewidth-narrowing of a continuous wave terahertz polariton laser using an intracavity etalon[J]. Optics Letters, 45, 157-160(2019).

    [36] Yan C, Wang Y Y, Xu D G et al. Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator[J]. Applied Physics Letters, 108, 011107(2016).

    [37] Murate K, Hayashi S, Kawase K. Multiwavelength terahertz-wave parametric generator for one-pulse spectroscopy[J]. Applied Physics Express, 10, 032401(2017).

    [38] Tang L H, Xu D G, Wang Y Y et al. Tunable dual-color terahertz wave parametric oscillator based on KTP crystal[J]. Optics Letters, 44, 5675-5678(2019).

    [39] Tang L H, Xu D G, Wang Y Y et al. Injection pulse-seeded terahertz-wave parametric generator with gain enhancement in wide frequency range[J]. Optics Express, 27, 22808-22818(2019).

    [40] Zernike F, Berman P R. Generation of far infrared as a difference frequency[J]. Physical Review Letters, 15, 999-1001(1965).

    [41] Shi W, Ding Y J, Fernelius N et al. Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal[J]. Optics Letters, 27, 1454-1456(2002).

    [42] Shi W, Ding Y J. Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide[J]. Applied Physics Letters, 83, 848-850(2003).

    [43] Ding Y J. Progress in terahertz sources based on difference-frequency generation[J]. Journal of the Optical Society of America B, 31, 2696-2711(2014).

    [44] Mei J L, Zhong K, Wang M R et al. Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm[J]. Optics Express, 24, 23368-23375(2016).

    [45] Yan D X, Wang Y Y, Xu D G et al. High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator[J]. Photonics Research, 5, 82-87(2017).

    [46] Taniuchi T, Okada S, Nakanishi H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application[J]. Journal of Applied Physics, 95, 5984-5988(2004).

    [47] Taniuchi T, Adachi H, Okada S et al. Continuously tunable THz and far-infrared wave generation from DAST crystal[J]. Electronics Letters, 40, 549-550(2004).

    [48] He Y X, Wang Y Y, Xu D G et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation[J]. Applied Physics B, 124, 16(2017).

    [49] Liu P X, Xu D G, Li Y et al. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal DSTMS[J]. EPL (Europhysics Letters), 106, 60001(2014).

    [51] Miyamoto K, Ohno S, Fujiwara M et al. Optimized terahertz-wave generation using BNA-DFG[J]. Optics Express, 17, 14832-14838(2009).

    [52] Liu P X, Zhang X, Yan C et al. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile[J]. Applied Physics Letters, 108, 011104(2016).

    [53] Ghajar J. Traumatic brain injury[J]. The Lancet, 356, 923-929(2000).

    [54] Murray C, Lopez A. Global health statistics: a compendium of incidence prevalence and mortality estimates for over 200 conditions[R](1996).

    [56] Wunder A, Schoknecht K, Stanimirovic D B et al. Imaging blood-brain barrier dysfunction in animal disease models[J]. Epilepsia, 53, 14-21(2012).

    [57] Yang S H, Xing D, Lao Y Q et al. Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging[J]. Applied Physics Letters, 90, 243902(2007).

    [58] Zhao H L, Wang Y Y, Chen L Y et al. High-sensitivity terahertz imaging of traumatic brain injury in a rat model[J]. Journal of Biomedical Optics, 23, 036015(2018).

    [59] Shi J, Wang Y Y, Chen T N et al. Automatic evaluation of traumatic brain injury based on terahertz imaging with machine learning[J]. Optics Express, 26, 6371-6381(2018).

    [60] Wang Y Y, Wang G Q, Xu D G et al. Terahertz spectroscopic diagnosis of early blast-induced traumatic brain injury in rats[J]. Biomedical Optics Express, 11, 4085-4098(2020).

    Tools

    Get Citation

    Copy Citation Text

    Degang Xu, Yuye Wang, Changhao Hu, Chao Yan, Kai Chen, Zelong Wang, Gang Nie, Jiaxin Zhang, Jianquan Yao. Optical Terahertz Radiation Sources and Terahertz Application in Traumatic Brain Injury[J]. Chinese Journal of Lasers, 2021, 48(19): 1914002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: Jun. 16, 2021

    Accepted: Jul. 21, 2021

    Published Online: Sep. 29, 2021

    The Author Email: Yuye Wang (yuyewang@tju.edu.cn)

    DOI:10.3788/CJL202148.1914002

    Topics