Journal of the Chinese Ceramic Society, Volume. 52, Issue 10, 3301(2024)

Preparation and Properties of Glass with High Transmittance and Intense Gamma Ray Shielding

ZHANG Meilun1, CAO Zhenbo1,2、*, YANG Shengyun1, ZHANG Yang1, HAN Yu11, QIU Fu1, ZHOU You1,2, ZHENG Jingming1,2, LIU Hui2, and JIA Jinsheng1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(44)

    [1] [1] ALY P, EL-KHESHEN A A, ABOU-GABAL H, et al. Structural investigation and measurement of the shielding effect of borosilicate glass containing PbO, SrO, and BaO against gamma irradiation[J]. J Phys Chem Solids, 2020, 145: 109521.

    [3] [3] PRAKASH A H D, MAHAMUDA S, ALZAHRANI J S, et al. Synthesis and characterization of B2O3–Bi2O3–SrO–Al2O3–PbO– Dy2O3 glass system: The role of Bi2O3/Dy2O3 on the optical, structural, and radiation absorption parameters[J]. Mater Res Bull, 2022, 155: 111952.

    [4] [4] CHO H S, OH J E, CHOI S I, et al. Performance evaluation of a gamma-ray imaging system for nondestructive testing of welded pipes[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2011, 652(1): 650–653.

    [5] [5] MOURA A E, DANTAS C C, NERY M S, et al. Non-destructive evaluation of weld discontinuity in steel tubes by gamma ray CT[J]. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater At, 2015, 349: 155–162.

    [6] [6] KANAGARAJ B, ANAND N, DIANA ANDRUSHIA A, et al. Recent developments of radiation shielding concrete in nuclear and radioactive waste storage facilities–A state of the art review[J]. Constr Build Mater, 2023, 404: 133260.

    [7] [7] ELBATAL H A, ABDELGHANY A M, GHONEIM N A, et al. Effect of 3d-transition metal doping on the shielding behavior of Barium borate glasses: A spectroscopic study[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2014, 133: 534–541.

    [8] [8] LEE C M, LEE Y H, LEE K J. Cracking effect on gamma-ray shielding performance in concrete structure[J]. Prog Nucl Energy, 2007, 49(4): 303–312.

    [9] [9] AKKURT I, AKYILDIRIM H, KARIP?IN F, et al. Chemical corrosion on gamma-ray attenuation properties of barite concrete[J]. J Saudi Chem Soc, 2012, 16(2): 199–202.

    [10] [10] SINGH S, KUMAR A, SINGH D, et al. Barium–borate–flyash glasses: As radiation shielding materials[J]. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater At, 2008, 266(1): 140–146.

    [11] [11] YILMAZ E, BALTAS H, KIRIS E, et al. Gamma ray and neutron shielding properties of some concrete materials[J]. Ann Nucl Energy, 2011, 38(10): 2204–2212.

    [12] [12] ZHOU Y C, CHEN X M, ZHAN Y J, et al. Research on the shielding performance of concrete in a 60Co irradiation environment[J]. Nucl Eng Des, 2023, 413: 112575.

    [13] [13] LUO L C, CHEN Z F, CAI S Y, et al. Mechanics, γ-ray shielding properties and acoustic emission characteristics of radiation shielding concrete exposed to elevated temperatures[J]. Case Stud Constr Mater, 2023, 19: e02572.

    [16] [16] YASAKA P, PATTANABOONMEE N, KIM H, et al. Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses[J]. Ann Nucl Energy, 2014, 68: 4–9.

    [17] [17] SALES B C, BOATNER L A. Optical, structural, and chemical characteristics of lead-indium phosphate and lead-scandium phosphate glasses[J]. J Am Ceram Soc, 1987, 70(9): 615–621.

    [18] [18] CULEA E, POP L, BOSCA M. Structural and physical characteristics of CeO2–GeO2–PbO glasses and glass ceramics[J]. J Alloys Compd, 2010, 505(2): 754–757.

    [19] [19] SINGH G P, KAUR S, KAUR P, et al. Modification in structural and optical properties of ZnO, CeO2 doped Al2O3–PbO–B2O3 glasses[J]. Phys B Condens Matter, 2012, 407(8): 1250–1255.

    [22] [22] SINGH G P, SINGH J, KAUR P, et al. Impact of TiO2 on radiation shielding competencies and structural, physical and optical properties of CeO2–PbO–B2O3 glasses[J]. J Alloys Compd, 2021, 885: 160939.

    [23] [23] ALOTAIBI B M, SAYYED M I, KUMAR A, et al. Optical and gamma-ray shielding effectiveness of a newly fabricated P2O5–CaO– Na2O–K2O–PbO glass system[J]. Prog Nucl Energy, 2021, 138: 103798.

    [24] [24] LIAN J, LI Q, CAO Z B, et al. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate[C]//AOPC 2017: Optoelectronics and Micro/Nano-Optics. Beijing, China. SPIE, 2017.

    [25] [25] AL-GHAMDI H, SAYYED M I, ELSAFI M, et al. An experimental study measuring the photon attenuation features of the P2O5–CaO– K2O–Na2O–PbO glass system[J]. Radiat Phys Chem, 2022, 200: 110153.

    [26] [26] SADEQ M S, SAYYED M I, ABDO M A, et al. Microstructure, electronic transitions and UV transparency of K2O–B2O3–Sm2O3 glass via PbO additives[J]. Opt Mater, 2023, 142: 113969.

    [27] [27] ALMUQRIN A H, KUMAR A, JECONG J F M, et al. Li2O–K2O–B2O3–PbO glass system: Optical and gamma-ray shielding investigations[J]. Optik, 2021, 247: 167792.

    [28] [28] MYTHILI N, ARULMOZHI K T, FAREED S S. A comparative study: On the properties of PbO–SiO2 glass systems synthesized via different routes[J]. Optik, 2016, 127(22): 10817–10824.

    [29] [29] ALOMAIRY S, AL-BURIAHI M S, ABDEL WAHAB E A, et al. Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system[J]. Ceram Int, 2021, 47(12): 17322–17330.

    [30] [30] ABDEL-WAHED M H, ABDOU S M, EL-BAYOUMI A S, et al. Structural, optical properties and γ-ray shielding parameters of PbO embedded Li2O borophosphate glass systems[J]. J Non Cryst Solids, 2020, 543: 120135.

    [31] [31] DE SOUSA MENESES D, MALKI M, ECHEGUT P. Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy[J]. J Non Cryst Solids, 2006, 352(8): 769–776.

    [32] [32] OUIS M A, ELBATAL F H. Shielding behavior of MoO3-doped lead borate glasses towards gamma irradiation assessed through collective optical, FTIR, and ESR spectral analysis[J]. Radiat Phys Chem, 2021(prepublish): 109537–.

    [33] [33] ELALAILY N A, ABOU-HUSSIEN E M, SAAD E A. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material[J]. Radiat Eff Defects Solids, 2016, 171(11–12): 840–854.

    [34] [34] ABO Z M, ALY S, EL SHAZLY R M, et al. Double effect of glass former B2O3 and intermediate Pb3O4 augmentation on the structural, thermal, and optical properties of borate network[J]. Optik, 2023, 272: 170368.

    [35] [35] ZAGRAI M, SUCIU R C, RADA S, et al. Structural and optical properties of Eu3+ ions in lead glass for photonic applications[J]. J Non Cryst Solids, 2021, 569: 120988.

    [36] [36] SADDEEK Y B, SEKHAR K C, ALBEDAH M A, et al. Unveiling the elastic properties of PbF2–MoO3–Bi2O3–B2O3 glass: A comprehensive analysis using FTIR and Raman spectroscopy[J]. Ceram Int, 2024, 50(2): 3719–3726.

    [37] [37] ZHENG K, ZHANG Z T, LIU L L, et al. Investigation of the viscosity and structural properties of CaO–SiO2–TiO2 slags[J]. Metall Mater Trans B, 2014, 45(4): 1389–1397.

    [38] [38] WANG Z J, SUN Y Q, SRIDHAR S, et al. Effect of Al2O3 on the viscosity and structure of CaO–SiO2–MgO–Al2O3–FetO slags[J]. Metall Mater Trans B, 2015, 46(2): 537–541.

    [39] [39] CHEN J W, LI A, ZHONG C, et al. Regulating the valence state of lead ions in lead aluminosilicate glass to improve the passivation performance for advanced chip packaging[J]. Appl Surf Sci, 2024, 651: 159208.

    [40] [40] LI M, WANG J, WANG J L, et al. Synthesis and Raman study on needlelike silicates in ancient Chinese Pb–Ba glass in Qin and Han dynasties[J]. J Raman Spectrosc, 2014, 45(8): 672–676.

    [41] [41] PENA R B, LAURENT V, DESCHAMPS T, et al. High-pressure plastic deformation of lead metasilicate glass accessed by Raman spectroscopy: Insights into the Qn distribution[J]. J Non Cryst Solids, 2021, 567: 120930.

    [42] [42] SAMPAIO D V, PICININ A, MOULTON B J A, et al. Raman scattering and molecular dynamics investigation of lead metasilicate glass and supercooled liquid structures[J]. J Non Cryst Solids, 2018, 499: 300–308.

    [43] [43] MAKISHIMA A, MACKENZIE J D. Direct calculation of Young’s moidulus of glass[J]. J Non Cryst Solids, 1973, 12(1): 35–45.

    [44] [44] GUO Y C, LI J Q, ZHANG Y, et al. High-entropy R2O3–Y2O3–TiO2–ZrO2–Al2O3 glasses with ultrahigh hardness, Young’s modulus, and indentation fracture toughness[J]. iScience, 2021, 24(7): 102735.

    [45] [45] HYUN S H, YEO T M, HA H M, et al. Structural evidence of mixed alkali effect for aluminoborosilicate glasses[J]. J Mol Liq, 2022, 347: 118319.

    [46] [46] NORITAKE F, NAITO S. Mechanism of mixed alkali effect in silicate glass/liquid: Pathway and network analysis[J]. J Non Cryst Solids, 2023, 610: 122321.

    [47] [47] WILKINSON C J, POTTER A R, WELCH R S, et al. Topological origins of the mixed alkali effect in glass[J]. J Phys Chem B, 2019, 123(34): 7482–7489.

    [48] [48] LAKSHMINARAYANA G, MEZA-ROCHA A N, SORIANO-ROMERO O, et al. Alkali/mixed alkali oxides having Nd3+: B2O3–TeO2–BaO–ZnO–NaF glasses: Perlustration of optical and luminescence traits for O-band amplification and near-infrared lasers[J]. J Non Cryst Solids, 2023, 619: 122573.

    [49] [49] PENG S, KE Z K, CAO X, et al. A novel type of borosilicate glass with excellent chemical stability and high ultraviolet transmission[J]. J Non Cryst Solids, 2020, 528: 119735.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Meilun, CAO Zhenbo, YANG Shengyun, ZHANG Yang, HAN Yu1, QIU Fu, ZHOU You, ZHENG Jingming, LIU Hui, JIA Jinsheng. Preparation and Properties of Glass with High Transmittance and Intense Gamma Ray Shielding[J]. Journal of the Chinese Ceramic Society, 2024, 52(10): 3301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 20, 2023

    Accepted: --

    Published Online: Nov. 14, 2024

    The Author Email: Zhenbo CAO (czb824@163.com)

    DOI:10.14062/j.issn.0454-5648.20230882

    Topics