Laser & Optoelectronics Progress, Volume. 57, Issue 10, 102801(2020)

Landsat 8 Remote Sensing Image Based on Deep Residual Fully Convolutional Network

Jiaqiang Zhang1,2,3, Xiaoyan Li1,2,3, Liyuan Li1,2,3, Pengcheng Sun2,4, Xiaofeng Su1,2、*, Tingliang Hu1,2, and Fansheng Chen1,2
Author Affiliations
  • 1Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China
  • 2Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute of Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
  • show less
    Figures & Tables(9)
    Block diagram of proposed method
    Architecture of U-Net based on residual network
    ResNet34 residual block diagram. (a) Residual block for feature extraction; (b) residual block for down-sampling
    Training procedure. (a) Loss change curves versus the number of epochs; (b) metrics change curves versus the number of epochs
    Examples of cloud detection. (a) Input images; (b) ground truth cloud mask; (c) results of proposed method; (d) results of U-Net; (e) results of Otsu method
    • Table 1. Structural parameters of ResNet34

      View table

      Table 1. Structural parameters of ResNet34

      Layer nameConv1Conv2_xConv3_xConv4_xConv5_x
      Output size112×11256×5628×2814×147×7
      Informationof blocksConv 7×7,64Max_pool3×3Conv3×3,64Conv3×3,64×3Conv3×3,128Conv3×3,128×4Conv3×3,256Conv3×3,256×6Conv3×3,512Conv3×3,512×3
    • Table 2. Parameters of ResNet-based U-Net

      View table

      Table 2. Parameters of ResNet-based U-Net

      Layer nameInput sizeInformation of blocksOutput size
      Encoder1224×224×3Conv(7×7)BatchNorm,ReLUMax_pool(3×3)112×112×64
      Encoder2112×112×64Conv2_x56×56×128
      Encoder356×56×128Conv3_x28×28×256
      Encoder428×28×256Conv4_x14×14×512
      Bridge14×14×512Conv5_x7×7×1024
      Decoder17×7×1024UpsamplingConcatConv(3×3),ReLU14×14×512
      Decoder214×14×512UpsamplingConcatConv(3×3),ReLU28×28×256
      Decoder328×28×256UpsamplingConcatConv(3×3),ReLU56×56×128
      Decoder456×56×128UpsamplingConcatConv(3×3),ReLU112×112×64
      Decoder5112×112×64UpsamplingConcatConv(3×3),ReLU224×224×64
      Output224×224×64Conv(1×1)224×224×2
    • Table 3. Results comparison of different cloud detection methods

      View table

      Table 3. Results comparison of different cloud detection methods

      MethodPA /%mPA /%mIoU /%Inferencetime /s
      Otsu85.5578.2467.041.0
      U-Net90.0484.5376.035.4
      Proposed method93.3393.4383.886.4
    • Table 4. Detail results of test set

      View table

      Table 4. Detail results of test set

      Scene IDDetection algorithmPA/%mPA/%mIoU /%
      LC80200462014005LGN00Otsu95.0076.2773.59
      U-Net96.4486.4682.32
      Proposed96.5995.6685.32
      LC80210072014236LGN00Otsu88.0380.9966.62
      U-Net93.3695.8780.49
      Proposed87.8292.4970.10
      LC80310202013223LGN00Otsu77.5078.5662.50
      U-Net92.5892.8786.19
      Proposed89.7489.3781.18
      LC80290372013257LGN00Otsu83.2970.2860.85
      U-Net76.2857.8145.41
      Proposed97.5694.2892.57
      LC81390292014135LGN00Otsu90.3181.9976.14
      U-Net92.7386.9882.15
      Proposed95.1295.4888.77
      LC81590362014051LGN00Otsu79.6976.2063.12
      U-Net83.3480.4769.21
      Proposed93.5192.5287.35
      LC81620432014072LGN00Otsu85.0183.4166.43
      U-Net95.5491.2486.45
      Proposed92.9994.2381.85
    Tools

    Get Citation

    Copy Citation Text

    Jiaqiang Zhang, Xiaoyan Li, Liyuan Li, Pengcheng Sun, Xiaofeng Su, Tingliang Hu, Fansheng Chen. Landsat 8 Remote Sensing Image Based on Deep Residual Fully Convolutional Network[J]. Laser & Optoelectronics Progress, 2020, 57(10): 102801

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Feb. 17, 2020

    Accepted: Feb. 25, 2020

    Published Online: May. 8, 2020

    The Author Email: Xiaofeng Su (fishsu@mail.sitp.ac.cn)

    DOI:10.3788/LOP57.102801

    Topics