Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1837015(2024)

Semantic Segmentation of Dual-Source Remote Sensing Images Based on Gated Attention and Multiscale Residual Fusion

Wen Guo1, Hong Yang1, and Chang Liu2、*
Author Affiliations
  • 1School of science, Beijing Information Science and Technology University, Beijing 100029, China
  • 2Institute of Applied Mathematics, Beijing Information Science and Technology University, Beijing 100101, China
  • show less
    Figures & Tables(12)
    Overall structure diagram of STAM-SegNet
    AGCA module
    AGSA module
    MFRF module
    Overall technical flowchart of the experiment
    Corresponding prediction effect diagram of comparative experimental results of different models on the Vaihingen dataset
    Corresponding prediction effect diagram of comparative experimental results of different models on the Potsdam dataset
    • Table 1. Dataset preprocessing and training configuration

      View table

      Table 1. Dataset preprocessing and training configuration

      ItemISPRS VaihingenISPRS Potsdam
      Input size512 × 512512 × 512
      Bands usedIRRG,DSMIRRG,DSM
      Batch size44
      Train number1617
      Val number45
      Test number1714
    • Table 2. Comparison of evaluation results of ablation experiment on the Vaihingen test set

      View table

      Table 2. Comparison of evaluation results of ablation experiment on the Vaihingen test set

      Baseline(Swin Transformer)AGCAAGSAMFRFMean F1 /%OA /%
      ×××88.5989.36
      ××89.0889.94
      ×89.4590.47
      89.6690.73
    • Table 3. Comparative experimental results of dual-source data feature fusion on the Vaihingen dataset

      View table

      Table 3. Comparative experimental results of dual-source data feature fusion on the Vaihingen dataset

      MethodInputMean F1 /%OA /%
      BaselineIRRG88.0288.94
      AddIRRG+DSM88.7389.52
      ConcatIRRG+DSM88.8789.77
      AGCAIRRG+DSM89.6690.73
    • Table 4. Comparison results of multiple evaluation metrics for each model on the Vaihingen testset

      View table

      Table 4. Comparison results of multiple evaluation metrics for each model on the Vaihingen testset

      MethodBackboneF1-score /%Mean F1 /%OA /%GFLOPs /GBParams /106
      Impervios_surfaceBuildingLow_vegetableTreeCar
      DeepLabV3+Resnet10191.5294.0881.6788.6482.4787.6889.24193.9449.58
      UperNetResnet10191.4893.8981.2188.3486.1488.2189.07243.9770.60
      DANetResnet10192.1594.8083.1989.1786.5489.1790.01276.7366.45
      TransUNetResnet101+VIT92.0894.9183.0288.9886.5789.1189.95803.490.7
      Swin-UNetSwin Transformer92.4995.6483.1289.3186.3789.3890.44349.7282.89
      STAM-SegNetSwin Transformer92.5695.9683.8289.3486.6189.6690.73233.2160.47
    • Table 5. Comparison results of multiple evaluation metrics for each model on the Potsdam testset

      View table

      Table 5. Comparison results of multiple evaluation metrics for each model on the Potsdam testset

      MethodBackboneF1-score /%Mean F1 /%OA /%GFLOPS /GBParams /106
      Impervios_surfaceBuildingLow_vegetableTreeCar
      DeepLabV3+Resnet10192.0895.6586.1687.1395.6591.3389.67193.9449.58
      UperNetResnet10192.5295.9886.3887.4595.8591.6490.01243.9770.60
      DANetResnet10192.6096.1686.5587.2695.9091.6990.10276.7366.45
      TransUNetResnet101+VIT92.3496.1086.2387.2996.0391.6090.07803.490.7
      Swin-UNetSwin Transformer92.9196.9187.1588.3795.9992.2790.72349.7282.89
      STAM-SegNetSwin Transformer93.5897.1387.5189.1996.3292.7591.23233.2160.47
    Tools

    Get Citation

    Copy Citation Text

    Wen Guo, Hong Yang, Chang Liu. Semantic Segmentation of Dual-Source Remote Sensing Images Based on Gated Attention and Multiscale Residual Fusion[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jan. 15, 2024

    Accepted: Feb. 26, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Chang Liu (liuchang@bistu.edu.cn)

    DOI:10.3788/LOP240534

    CSTR:32186.14.LOP240534

    Topics