Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1929(2025)

Boosting Ionic Transport Performance through Correlated Migration: A Case Study of Titanite-Type LiTaSiO5

LI Shen1, ZOU Zheyi1, HE Bing2, and SHI Siqi3,4
Author Affiliations
  • 1School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
  • 2School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
  • 3State Key Laboratory of Materials for Advanced Nuclear Energy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • 4Materials Genome Institute, Shanghai University, Shanghai 200444, China
  • show less
    References(38)

    [1] [1] JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nat Energy, 2023, 8(3): 230–240.

    [2] [2] SCHMALTZ T, HARTMANN F, WICKE T, et al. A roadmap for solid-state batteries[J]. Adv Energy Mater, 2023, 13(43): 2301886.

    [3] [3] BOARETTO N, GARBAYO I, VALIYAVEETTIL-SOBHANRAJ S, et al. Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing[J]. J Power Sources, 2021, 502: 229919.

    [4] [4] MA Z K, CHEN J W, VATAMANU J, et al. Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery[J]. Energy Storage Mater, 2022, 45: 903–910.

    [5] [5] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nat Mater, 2019, 18(12): 1278–1291.

    [6] [6] HUANG J, LI C, JIANG D K, et al. Solid-state electrolytes for lithium metal batteries: State-of-the-art and perspectives[J]. Adv Funct Mater, 2025, 35(1): 2411171.

    [7] [7] ZOU Z Y, LI Y J, LU Z H, et al. Mobile ions in composite solids[J]. Chem Rev, 2020, 120(9): 4169–4221.

    [8] [8] RAZA S, BASHIR T, HAYAT A, et al. Recent progress and fundamentals of solid-state electrolytes for all solid-state rechargeable batteries: Mechanisms, challenges, and applications[J]. J Energy Storage, 2024, 92: 112110.

    [9] [9] SHI S Q, LU P, LIU Z Y, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. J Am Chem Soc, 2012, 134(37): 15476–15487.

    [10] [10] LANG B, ZIEBARTH B, ELSSSER C. Lithium ion conduction in LiTi2(PO4)3 and related compounds based on the NASICON structure: A first-principles study[J]. Chem Mater, 2015, 27(14): 5040–5048.

    [11] [11] HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nat Commun, 2017, 8: 15893.

    [12] [12] HU P, ZOU Z Y, SUN X W, et al. Uncovering the potential of M1-site-activated NASICON cathodes for Zn-ion batteries[J]. Adv Mater, 2020, 32(14): 1907526.

    [13] [13] XIAO Y H, JUN K, WANG Y, et al. Lithium oxide superionic conductors inspired by garnet and NASICON structures[J]. Adv Energy Mater, 2021, 11(37): 2101437.

    [14] [14] WU J F, ZOU Z Y, PU B W, et al. Liquid-like Li-ion conduction in oxides enabling anomalously stable charge transport across the Li/electrolyte interface in all-solid-state batteries[J]. Adv Mater, 2023, 35(40): 2303730.

    [15] [15] PU B W, ZOU Z Y, LIU J P, et al. Direct calculation of effective mobile ion concentration in lithium superionic conductors[J]. NPJ Comput Mater, 2025, 11: 37.

    [16] [16] XIONG S, HE X F, HAN A J, et al. Computation-guided design of LiTaSiO5, a new lithium ionic conductor with sphene structure[J]. Adv Energy Mater, 2019, 9(22): 1803821.

    [17] [17] WANG Q, WU J F, LU Z H, et al. A new lithium-ion conductor LiTaSiO5: Theoretical prediction, materials synthesis, and ionic conductivity[J]. Adv Funct Mater, 2019, 29(37): 1904232.

    [18] [18] JUN K, SUN Y Z, XIAO Y H, et al. Lithium superionic conductors with corner-sharing frameworks[J]. Nat Mater, 2022, 21(8): 924–931.

    [19] [19] YANG J J, TSE J S. Li ion diffusion mechanisms in LiFePO4: Anab initiomolecular dynamics study[J]. J Phys Chem A, 2011, 115(45): 13045–13049.

    [20] [20] XU M, DING J, MA E. One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor[J]. Appl Phys Lett, 2012, 101(3): 031901.

    [21] [21] DE KLERK N J J, VAN DER MAAS E, WAGEMAKER M. Analysis of diffusion in solid-state electrolytes through MD simulations, improvement of the Li-ion conductivity in -Li3PS4 as an example[J]. ACS Appl Energy Mater, 2018, 1(7): 3230–3242.

    [22] [22] ZHU Z Y, CHU I H, DENG Z, et al. Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor[J]. Chem Mater, 2015, 27(24): 8318–8325.

    [23] [23] HE X F, ZHU Y Z, EPSTEIN A, et al. Statistical variances of diffusional properties fromab initiomolecular dynamics simulations[J]. NPJ Comput Mater, 2018, 4: 18.

    [24] [24] ZHANG Z Z, ZOU Z Y, KAUP K, et al. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes[J]. Adv Energy Mater, 2019, 9(42): 1902373.

    [25] [25] ZOU Z Y, MA N, WANG A P, et al. Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON[J]. Adv Energy Mater, 2020, 10(30): 2001486.

    [26] [26] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.

    [27] [27] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.

    [28] [28] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.

    [29] [29] ZAGORAC D, MLLER H, RUEHL S, et al. Recent developments in the inorganic crystal structure database: Theoretical crystal structure data and related features[J]. J Appl Crystallogr, 2019, 52(Pt 5): 918–925.

    [30] [30] GENKINA E A, MILL B V, KIRSCH S G. Crystal structures of the sphenes NaSbGeO5, NaTaGeO5, and LiTaSiO5[J]. Sov Phys Crystallogr, 1992, 37(6): 769–772.

    [31] [31] NOS S. A unified formulation of the constant temperature molecular dynamics methods[J]. \jcp, 1984, 81(1): 511–519.

    [32] [32] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Phys Rev A Gen Phys, 1985, 31(3): 1695–1697.

    [33] [33] HE B, MI P H, YE A J, et al. A highly efficient and informative method to identify ion transport networks in fast ion conductors[J]. Acta Mater, 2021, 203: 116490.

    [34] [34] HE B, YE A J, CHI S T, et al. CAVD, towards better characterization of void space for ionic transport analysis[J]. Sci Data, 2020, 7(1): 153.

    [35] [35] JUN K, CHEN Y, WEI G, et al. Diffusion mechanisms of fast lithium-ion conductors[J]. Nat Rev Mater, 2024, 9(12): 887–905.

    [36] [36] KOZINSKY B, AKHADE S A, HIREL P, et al. Effects of sublattice symmetry and frustration on ionic transport in garnet solid electrolytes[J]. Phys Rev Lett, 2016, 116(5): 055901.

    [39] [39] HE B, CHI S T, YE A J, et al. High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms[J]. Sci Data, 2020, 7(1): 151.

    [40] [40] PHANI DATHAR G K, BALACHANDRAN J, KENT P R C, et al. Li-ion site disorder driven superionic conductivity in solid electrolytes: A first-principles investigation of -Li3PS4[J]. J Mater Chem A, 2017, 5(3): 1153–1159.

    Tools

    Get Citation

    Copy Citation Text

    LI Shen, ZOU Zheyi, HE Bing, SHI Siqi. Boosting Ionic Transport Performance through Correlated Migration: A Case Study of Titanite-Type LiTaSiO5[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1929

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Apr. 30, 2025

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20250350

    Topics