Chinese Optics Letters, Volume. 21, Issue 4, 041604(2023)

Atomic structures and carrier dynamics of defects in a ZnGeP2 crystal

Xiaoguang Pan1, Yongzheng Wang1, Hangxin Bai1, Caixia Ren1, Jiangbo Peng1, Fangli Jing1, Hailong Qiu1, Zuotao Lei2、*, Hongjun Liu1、**, Chunhui Yang2, Zhanggui Hu1, and Yicheng Wu1
Author Affiliations
  • 1Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
  • 2Harbin Institute of Technology, Harbin 150001, China
  • show less
    References(43)

    [1] J. L. Shay, J. H. Wernick. Ternary Chalcopyrite Structure Semiconductors(1976).

    [2] X. Zhao, S. F. Zhu, B. J. Zhao, B. J. Chen, Z. Y. He, R. L. Wang, H. G. Yang, Y. Q. Sun, J. Cheng. Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method. J. Cryst. Growth., 311, 190(2008).

    [3] L. Wang, T. L. Xing, S. W. Hu, X. Y. Wu, H. X. Wu, J. Y. Wang, H. H. Jiang. Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%. Opt. Express, 25, 3373(2017).

    [4] D. H. Yang, B. J. Zhao, B. J. Chen, S. F. Zhu, Z. Y. He, W. Huang, Z. R. Zhao, M. D. Liu. Impurity phases analysis of ZnGeP2 single crystal grown by Bridgman method. J. Alloy. Compd., 709, 125(2017).

    [5] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2006).

    [6] V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan. Handbook of Nonlinear Optical Crystals(2013).

    [7] P. B. Phua, K. S. Lai, R. F. Wu, T. C. Chong. High-efficiency mid-infrared ZnGeP2 optical parametric oscillator in a multimode-pumped tandem optical parametric oscillator. Appl. Opt., 38, 563(1999).

    [8] C. P. Qian, X. M. Duan, B. Q. Yao, Y. J. Shen, Y. Zhang, B. R. Zhao, J. H. Yuan, T. Y. Dai, Y. L. Ju, Y. Z. Wang. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier. Opt. Express, 26, 30195(2018).

    [9] U. Chatterjee. Development of coherent tunable source in 2–16 µm region using nonlinear frequency mixing processes. Pramana-J. Phys., 82, 29(2014).

    [10] L. V. Koval’chuk, A. N. Grezev, V. G. Niz’ev, V. P. Yakunin, V. S. Mezhevov, D. A. Goryachkin, V. V. Sergeev, A. G. Kalintsev. Repetitively pulsed TEA CO2 laser and its application for second harmonic generation in ZnGeP2 crystal. Quantum. Electron., 45, 884(2015).

    [11] S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, N. C. Giles. Characterization of defect-related optical absorption in ZnGeP2. J. Appl. Phys., 86, 6677(1999).

    [12] S.-H. Nam, V. Fedorov, S. Mirov, K.-H. Hong. Octave-spanning mid-infrared femtosecond OPA in a ZnGeP2 pumped by a 2.4 µm Cr:ZnSe chirped-pulse amplifier. Opt. Express, 28, 32403(2020).

    [13] T. T. Yu, S. P. Wang, X. Zhang, C. N. Li, J. Qiao, N. Jia, B. Han, S.-Q. Xia, X. T. Tao. MnSiP2: a new Mid-IR ternary phosphide with strong SHG effect and ultrabroad transparency range. Chem. Mater., 31, 2010(2019).

    [14] S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, T. M. Pollak. Electron paramagnetic resonance of a cation antisite defect in ZnGeP2. Appl. Phys. Lett., 74, 1218(1999).

    [15] D. M. Hofmann, N. G. Romanov, W. Gehlhoff, D. Pfisterer, B. K. Meyer, D. Azamat, A. Hoffmann. Optically detected magnetic resonance experiments on native defects in ZnGeP2. Physica B Condens. Matter, 340, 978(2003).

    [16] G. D. Zhang, X. T. Tao, S. P. Wang, G. D. Liu, Q. Shi, M. H. Jiang. Growth and thermal annealing effect on infrared transmittance of ZnGeP2 single crystal. J. Cryst. Growth., 318, 717(2011).

    [17] N. C. Giles, L. H. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, T. M. Pollak. Infrared absorption bands associated with native defects in ZnGeP2. J. Appl. Phys., 93, 8975(2003).

    [18] M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, M. R. Kozlowski. Modeling of laser damage initiated by surface contamination. Proc. SPIE, 2966, 417(1996).

    [19] M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett., 80, 4076(1998).

    [20] H. J. Liu, L. Jiao, F. Yang, Y. Cai, X. X. Wu, W. K. Ho, C. L. Gao, J. F. Jia, N. Wang, H. Fan, W. Yao, M. H. Xie. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett., 113, 066105(2014).

    [21] L. E. Halliburton, G. J. Edwards, M. P. Scripsick, M. H. Rakowsky, P. G. Schunemann, T. M. Pollak. Electron-nuclear double resonance of the zinc vacancy in ZnGeP2. Appl. Phys. Lett., 66, 2670(1995).

    [22] Q. Fan, S. F. Zhu, B. J. Zhao, B. J. Chen, Z. Y. He, J. Cheng, T. Xu. Influence of annealing on optical and electrical properties of ZnGeP2 single crystals. J. Cryst. Growth., 318, 725(2011).

    [23] M. Moldovan, N. C. Giles. Broad-band photoluminescence from ZnGeP2. J. Appl. Phys., 87, 7310(2000).

    [24] M. Moldovan, K. T. Stevens, L. E. Halliburton, P. G. Schunemann, T. M. Pollak, S. D. Setzler, N. C. Giles. Photoluminescence and EPR of phosphorus vacancies in ZnGeP2. Mat. Res. Soc. Symp. Proc., 607, 445(1999).

    [25] Q. L. Cui, Z. Y. Luo, Q. R. Cui, W. Zhu, H. W. Shou, C. Q. Wu, Z. F. Liu, Y. X. Lin, P. J. Zhang, S. Q. Wei, H. X. Yang, S. M. Chen, A. L. Pan, L. Song. Robust and high photoluminescence in WS2 monolayer through in situ defect engineering. Adv. Funct. Mater., 31, 2105339(2021).

    [26] J. B. Peng, D. C. Yang, C. X. Ren, Y. Jiang, X. L. Zhu, F. L. Jing, H. L. Qiu, H. J. Liu, Z. G. Hu. Electronic properties and carrier dynamics at the alloy interfaces of WS2xSe2−2x spiral nanosheets. Adv. Mater., 34, 2107738(2022).

    [27] Y. Janssen, D. Santhanagopalan, D. Qian, M. F. Chi, X. P. Wang, C. Hoffmann, Y. S. Meng, P. G. Khalifah. Reciprocal salt flux growth of LiFePO4 single crystals with controlled defect concentrations. Chem. Mater., 25, 4574(2013).

    [28] C. Callaert, M. Bercx, D. Lamoen, J. Hadermann. Interstitial defects in the van der Waals gap of Bi2Se3. Acta. Crystallog. B, 75, 717(2019).

    [29] S. K. Tripathy, V. Kumar. Electronic, elastic and optical properties of ZnGeP2 semiconductor under hydrostatic pressures. Mat. Sci. Eng. B, 182, 52(2014).

    [30] G. J. He, I. Rozahun, Z. Li, J. Zhang, M.-H. Lee. Size effect and identified superior functional units enhancing second harmonic generation responses on the II-IV-V2 type nonlinear optical crystals. Chem. Phys., 518, 101(2019).

    [31] Z. T. Lei, C. Q. Zhu, C. Xu, B. Q. Yao, C. H. Yang. Growth of crack-free ZnGeP2 large single crystals for high-power mid-infrared OPO applications. J. Cryst. Growth., 389, 23(2014).

    [32] S. Shirakata. Raman scattering and its hydrostatic pressure dependence in ZnGeP2 crystal. J. Appl. Phys., 85, 3294(1999).

    [33] G. D. Zhang, L. Wei, L. Z. Zhang, X. P. Wang, B. Liu, X. Zhao, X. T. Tao. Growth and polarized Raman spectroscopy investigations of single crystal CdSiP2: experimental measurements and ab initio calculations. J. Cryst. Growth., 473, 28(2017).

    [34] C. I. Rablau, N. C. Giles. Sharp-line luminescence and absorption in ZnGeP2. J. Appl. Phys., 90, 3314(2001).

    [35] F. F. Wang, L. Jiang, J. Y. Sun, C. J. Pan, Y. L. Lian, J. X. Sun, K. Wang, Q. S. Wang, J. X. Wang, Y. F. Lu. One-step fabrication method of GaN films for internal quantum efficiency enhancement and their ultrafast mechanism investigation. ACS Appl. Mater. Interfaces, 13, 7688(2021).

    [36] K. P. O’Donnell, X. Chen. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett., 58, 2924(1991).

    [37] W. Gehlhoff, R. N. Pereira, D. Azamat, A. Hoffmann, N. Dietz. Energy levels of native defects in zinc germanium diphosphide. Physica B Condens. Matter, 308, 1015(2001).

    [38] S. D. Setzler, L. E. Halliburton, N. C. Giles, P. G. Schunemann, T. M. Pollak. Electron paramagnetic resonance and photoluminescence studies of point defects in zinc germanium phosphide (ZnGeP2). Mat. Res. Soc. Symp. Proc., 450, 327(1996).

    [39] P. Z. Wang, D. W. He, Y. S. Wang, X. X. Zhang, J. Q. He, H. Zhao. Fast exciton diffusion in monolayer PtSe2. Laser. Photonics. Rev., 16, 2100594(2022).

    [40] N. Kumar, J. Q. He, D. W. He, Y. S. Wang, H. Zhao. Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy. J. Appl. Phys., 113, 133702(2013).

    [41] X. A. Dou, X. Q. Sun, H. Li, X. D. Chen. The study of transient bleaching effect of indirect bandgap semiconductors induced by femtosecond laser. Optik, 126, 3267(2015).

    [42] E. Rogowicz, J. Kopaczek, J. Kutrowska-Girzycka, M. Myronov, R. Kudrawiec, M. Syperek. Carrier dynamics in thin germanium–tin epilayers. ACS Appl. Electron. Mater., 3, 344(2021).

    [43] S. W. Yin, Y. P. Han, T. W. Yan, Q. Fu, T. T. Xu, W. Z. Wu. Ultrafast carrier dynamics in SnSe thin film studied by femtosecond transient absorption technique. Physica B Condens. Matter, 622, 413347(2021).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Xiaoguang Pan, Yongzheng Wang, Hangxin Bai, Caixia Ren, Jiangbo Peng, Fangli Jing, Hailong Qiu, Zuotao Lei, Hongjun Liu, Chunhui Yang, Zhanggui Hu, Yicheng Wu, "Atomic structures and carrier dynamics of defects in a ZnGeP2 crystal," Chin. Opt. Lett. 21, 041604 (2023)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Materials

    Received: Nov. 25, 2022

    Accepted: Jan. 6, 2023

    Published Online: Apr. 10, 2023

    The Author Email: Zuotao Lei (leizuotao@hit.edu.cn), Hongjun Liu (hjliu@email.tjut.edu.cn)

    DOI:10.3788/COL202321.041604

    Topics