Journal of Atmospheric and Environmental Optics, Volume. 18, Issue 5, 469(2023)
Infrared and visible images fusion with spatial multiscale residual networks
[1] Castillo J C, Fernández-Caballero A, Serrano-Cuerda J et al. Smart environment architecture for robust people detection by infrared and visible video fusion[J]. Journal of Ambient Intelligence and Humanized Computing, 8, 223-237(2017).
[2] Tian Y, Yang W J, Wang J. Image fusion using a multi-level image decomposition and fusion method[J]. Applied Optics, 60, 7466-7479(2021).
[3] Ma J Y, Ma Y, Li C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 45, 153-178(2019).
[4] Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).
[5] Li H, Wu X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 28, 2614-2623(2018).
[6] Huang G, Liu Z, Van Der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).
[7] Li H, Wu X J, Durrani T. NestFuse: An infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 69, 9645-9656(2020).
[8] Zhou Z W, Rahman Siddiquee M M, Tajbakhsh N et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation[M]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 3-11(2018).
[9] An W B, Wang H M. Infrared and visible image fusion with supervised convolutional neural network[J]. Optik, 219, 165120(2020).
[10] Ma J Y, Yu W, Liang P et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).
[11] Xu D D, Wang Y C, Xu S Y et al. Infrared and visible image fusion with a generative adversarial network and a residual network[J]. Applied Sciences, 10, 554(2020).
[12] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[13] Ma J Y, Xu H, Jiang J J et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 29, 4980-4995(2020).
[14] Ronneberger O, Fischer P, Brox T. U-net: Convolutional Networks for Biomedical Image Segmentation[M]. Lecture Notes in Computer Science, 234-241(2015).
[15] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[16] Liu P F, Zhao H C, Cao F D. Blind deblurring of noisy and blurry images of multi-scale convolutional neural network[J]. Infrared and Laser Engineering, 48, 300-308(2019).
[17] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[18] Woo S, Park J, Lee J Y et al[M]. CBAM:
[19] Liu P F, Zhao H C, Li P X. Hyperspectral images reconstruction using adversarial networks from single RGB image[J]. Infrared and Laser Engineering, 49, 143-150(2020).
[20] Xu H, Ma J Y, Le Z L et al. FusionDN: A unified densely connected network for image fusion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12484-12491(2020).
[21] Fu Y, Wu X J. A dual-branch network for infrared and visible image fusion[C], 10675-10680(2021).
[22] Zhang X C, Ye P, Xiao G. VIFB: A visible and infrared image fusion benchmark[C], 104-105(2020).
[23] Tian S W, Lin S Z, Lei H W et al. Multi-band image synchronous super-resolution and fusion method based on improved WGAN-GP[J]. Acta Optica Sinica, 40, 2010001(2020).
Get Citation
Copy Citation Text
Yimen ZHANG, Weiguo LIN. Infrared and visible images fusion with spatial multiscale residual networks[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 469
Category:
Received: Feb. 17, 2022
Accepted: --
Published Online: Dec. 1, 2023
The Author Email: Weiguo LIN (linwg@mail.buct.edu.can)