Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1237010(2025)

Low-Light Target-Detection Algorithm Combined with Image Enhancement

Xiaodi Zhang and Shijie Jia*
Author Affiliations
  • School of Track Intelligent Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning , China
  • show less
    Figures & Tables(15)
    LowLight-YOLOv8n model structure
    Retinexformer overall design architecture
    Spatial feature transformation of the receptive field
    RFCAConv detailed structure
    UniRepLKNet overall structure
    C2f_UniRepLKNetBlock design structure
    ExDark dataset category examples
    mAP curves of YOLOv8n and LowLight-YOLOv8n. (a) mAP@0.5; (b) mAP@0.5∶0.95
    Comparison of enhancement images with different enhancement networks
    Visual comparison between YOLOv8n and LowLight-YOLOv8n. (a), (c), (e), (g) are the detection results of YOLOv8n, respectively; (b), (d), (f), (h) are the detection results of LowLight-YOLOv8n, respectively
    • Table 1. Training parameters

      View table

      Table 1. Training parameters

      ParameterValue
      Image size640 pixel×640 pixel
      Learning rate0.01
      Epochs200
      Batch size16
      Weight decay0.0005
      Momentum0.937
    • Table 2. Comparative experiment results of different algorithms

      View table

      Table 2. Comparative experiment results of different algorithms

      MethodP /%R /%mAP@0.5 /%mAP@0.5∶0.95 /%Number of parameters /106FLOPs /109Model size /MB
      Faster R-CNN70.056.363.541.0092.95
      YOLOv5n69.360.065.840.02.517.105.3
      YOLOv6n70.260.566.641.74.2311.808.7
      YOLOv7-Tiny72.361.267.041.36.0213.2012.2
      YOLOv8n69.362.468.142.33.018.106.3
      YOLOv9t69.361.467.742.62.017.604.6
      YOLOv10n68.758.464.839.72.708.205.8
      RTDETR-l76.159.866.640.832.00103.5066.2
      MAET1174.065.32215.91
      DK_YOLOv52675.062.271.547.0
      Dark-YOLO2774.7
      DarkYOLOv82870.18.53
      Ours78.766.374.948.12.9218.106.3
    • Table 3. Comparison experiment results of low light enhancement networks

      View table

      Table 3. Comparison experiment results of low light enhancement networks

      MethodNumber of parameters /106mAP@0.5 /%
      YOLOv8n3.0168.1
      YOLOv8n+Zero-DCE293.0268.2
      YOLOv8n+RUAS304.6268.4
      YOLOv8n+SCINet313.0168.8
      YOLOv8n+Retinexformer183.0869.6
    • Table 4. Comparison of image quality metrics for enhancement networks

      View table

      Table 4. Comparison of image quality metrics for enhancement networks

      MethodPSNR /dBSSIM
      Zero-DCE23.130.73
      RUAS21.670.67
      SCINet24.510.74
      Retinexformer25.960.81
    • Table 5. Ablation experiment results

      View table

      Table 5. Ablation experiment results

      Baseline modelRetinexformerRFCAConvC2f_UniRepLKNetBlockFocaler-CIoUmAP@0.5 /%mAP@0.5∶0.95 /%Number of parameters /106FLOPs /109Model size /MB
      YOLOv8n68.142.33.018.16.3
      69.643.53.0818.36.5
      69.343.13.068.36.4
      68.742.22.797.75.9
      69.442.83.018.16.3
      71.844.33.1318.56.6
      72.244.52.9218.16.3
      73.546.73.1318.56.6
      74.948.12.9218.16.3
    Tools

    Get Citation

    Copy Citation Text

    Xiaodi Zhang, Shijie Jia. Low-Light Target-Detection Algorithm Combined with Image Enhancement[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1237010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Nov. 11, 2024

    Accepted: Jan. 2, 2025

    Published Online: Jun. 25, 2025

    The Author Email: Shijie Jia (jsj@djtu.edu.cn)

    DOI:10.3788/LOP242249

    CSTR:32186.14.LOP242249

    Topics