Opto-Electronic Engineering, Volume. 47, Issue 11, 190628(2020)
Person re-identification by multi-division attention
[2] [2] Su C, Zhang S L, Yang F, et al. Attributes driven track-let-to-tracklet person re-identification using latent prototypes space mapping[J]. Pattern Recognition, 2017, 66: 4–15.
[3] [3] Matsukawa T, Okabe T, Suzuki E, et al. Hierarchical gaussian descriptor for person Re-identification[C]//2016 IEEE Confe-rence on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 1363–1372.
[4] [4] Zhao R, Ouyang W L, Wang X G. Person Re-identification by salience matching[C]//2013 IEEE International Conference on Computer Vision, Sydney, NSW,Australia, 2013: 2528–2535.
[5] [5] Chen D P, Yuan Z J, Hua G, et al. Similarity learning on an ex-plicit polynomial kernel feature map for person re-identification[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015: 1565–1573.
[6] [6] Sun Y F, Zheng L, Deng W J, et al. SVDNet for pedestrian re-trieval[C]//2017 IEEE International Conference on Computer Vi-sion (ICCV), Venice, Italy, 2017: 3820–3828.
[7] [7] Yang X, Wang M, Tao D C. Person Re-identification with metric learning using privileged information[J]. IEEE Transactions on Image Processing, 2018, 27(2): 791–805.
[8] [8] Zhang L, Xiang T, Gong S G. Learning a discriminative null space for person Re-identification[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 1239–1248.
[11] [11] Li W, Zhao R, Xiao T, et al. DeepReID: deep filter pairing neural network for person Re-identification[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 152–159.
[12] [12] Zheng L, Shen L Y, Tian L, et al. Scalable person Re-identification: a benchmark[C]//2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1116–1124.
[13] [13] Zheng Z D, Zheng L, Yang Y. Unlabeled samples generated by GAN improve the person Re-identification baseline in Vi-tro[C]//2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 3774–3782.
[14] [14] Sudowe P,SpitzerH, LeibeB. Personattributerecognition witha jointly-trained holistic CNN model[C]//2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 2015: 329–337.
[17] [17] WeiL H,ZhangSL, Yao H T, et al.GLAD: global-local-alignment descriptor for pedestrian retrieval[C]//Proceedings of the 25th ACM International Conference on Multimedia, California, Mountain View, USA, 2017: 420–428.
[18] [18] Sun Y F, Zheng L, Yang Y, et al. Beyond part models: person retrieval with refined part pooling[Z]. arXiv:1711.09349[cs:CV], 2017.
[19] [19] Zheng Z D, Zheng L, Yang Y. Pedestrian alignment network for large-scale person Re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(10): 3037–3045.
[20] [20] Cheng D, GongYH, Zhou S P, et al. Person Re-identification by multi-channel parts-based CNN with improved triplet loss func-tion[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 1335–1344.
[21] [21] ZhengL, Huang Y J,Lu H C, et al. Pose-invariantembedding for deep person Re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(9): 4500–4509.
[22] [22] SuC,LiJ N,ZhangS L, et al. Pose-driven deep convolutional model for person Re-identification[C]//2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 3980–3989.
[23] [23] Li D W, Chen X T, Zhang Z, et al. Learning deep context-aware features over body and latent parts for person Re-identification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017: 7398–7407.
[24] [24] Zhao L M, Li X, Zhuang Y T, et al. Deeply-learned part-aligned representations for person Re-identification[C]//2017 IEEE In-ternational Conference on Computer Vision (ICCV), Venice, Italy, 2017: 3239–3248.
[25] [25] Li W, Zhu X T, Gong S G. Harmonious attention network for person Re-identification[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 2285–2294.
[26] [26] Liu X H,Zhao H Y,TianMQ, et al. HydraPlus-Net: attentive deep features for pedestrian analysis[C]//2017 IEEE Interna-tional Conference on Computer Vision (ICCV), Venice, Italy, 2017: 350–359.
[27] [27] Hermans A, Beyer L, Leibe B. In Defense of the triplet loss for person Re-Identification[Z]. arXiv: 1703.07737[cs:CV], 2017.
[28] [28] Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hie-rarchical image database[C]//2009 IEEE Conference on Com-puter Vision and Pattern Recognition, Miami, FL, USA, 2009: 248–255.
[29] [29] Zhong Z, Zheng L, Cao D L, et al. Re-ranking person Re-identification with k-reciprocal encoding[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017: 3652–3661.
[30] [30] Lin Y T, Zheng L, Zheng Z D, et al. Improving person Re-identification by attribute and identity learning[Z]. arXiv: 1703.07220[cs:CV], 2017.
[31] [31] Zhang X, Luo H, Fan X, et al. AlignedReID: surpassing hu-man-level performance in person Re-identification[Z]. arXiv: 1711.08184[cs:CV], 2017.
[32] [32] Si J L, Zhang H G, Li C G, et al. Dual attention matching network for context-aware feature sequence based person Re-identification[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 5363–5372.
[33] [33] Felzenszwalb P F, McAllester D A, Ramanan D. A discrimina-tively trained, multiscale, deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition, An-chorage,AK, USA, 2008: 1–8.
Get Citation
Copy Citation Text
Xue Lixia, Zhu Zhengfa, Wang Ronggui, Yang Juan. Person re-identification by multi-division attention[J]. Opto-Electronic Engineering, 2020, 47(11): 190628
Category: Article
Received: Oct. 17, 2019
Accepted: --
Published Online: Jan. 12, 2021
The Author Email: Juan Yang (yangjuan6985@163.com)