Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0200002(2023)

Review of Image Inpainting Methods

Xuetao Li1, Yaoxiong Wang2, and Fang Gao1、*
Author Affiliations
  • 1School of Electrical Engineering, Guangxi University, Nanning 530004, Guangxi, China
  • 2Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • show less
    Figures & Tables(13)
    RNN based pixel generation method
    CNN based pixel generation method
    Structure of traditional auto-encoder[7]
    Context encoder[40]
    Structure diagram of GAN
    Place2 dataset[74]
    Paris Street View dataset[75]
    CelebA-HQ dataset[77]
    Nvidia Mask dataset[51]
    Quick Draw Irregular Mask dataset[80]
    • Table 1. Summary of traditional methods on image inpainting

      View table

      Table 1. Summary of traditional methods on image inpainting

      CategoryMethodYear/SourceContribution
      Exemplar-based texture synthesisEfros et al81999/ICCVNonparametric texture synthesis
      Wei et al92000/ACMGaussian pyramid model based on Markov Random Field
      Efros et al102001/ACMSimple and efficient image quilting technology
      Ballester et al142001/IEEE TransMatching local features by calculating image gradients
      Drori et al112003/ACMComputing confidence for each patch
      Hays et al122007/ACMSearching patchs within external databases
      He et al152014/IEEE TransMatching local features by using the statistics of similar patches
      Exemplar-based structure synthesisBertalmio et al172000/ACMUsing Partial Differential Equation to generate linear structural patches
      Criminisi et al182004/IEEETexture and structure information can be transmitted simultaneously
      Chen et al202020/Laser & Optoelectronics ProgressImproved the priority calculation formula18with the method of refining data items
      Wang212020/Laser & Optoelectronics ProgressOptimized the priority calculation formula18by introducing the local color variance
      Chen et al222020/Laser & Optoelectronics ProgressOptimized the priority calculation formula18by introducing the information entropy of measuring the complexity of the pixel block
      Cheng et al192005/IEEEOptimized the priority function in Criminisi18
      Kwatra et al262005/ACM TOGUsing planar exemplar guidance
      Simakov et al232008/IEEEA mathematical model for local restoration of untextured images
      Barnes et al242009/ACMFast stochastic calculation based on NNF
      Ružić et al272014/IEEEGlobal repair algorithm combined with Markov Random Field
      Huang et al252014/ACM TOGUsing planar structure guidance
      Diffusion-based techniquesBertalmio et al172000/ACMDiffusion method based on isophote lines
      Shen et al282002/SIAMCombined total variation denoising model with Partial Differential Equation
      Telea et al292004/JGTFast Marching Method
    • Table 2. Summary of image inpainting methods based on deep learning

      View table

      Table 2. Summary of image inpainting methods based on deep learning

      CategoryMethodYear/SourceContribution
      Pixel-generation-based techniquesRichard et al352001/VIIPFast image restoration method based on diffusion convolution kernel(Gaussian)
      Hadhoud et al362008/SIPThe position of zero weight value of diffusion convolution kernel35
      Jain et al372008/NIPSA neural network structure for denoising
      Auto-encoder-based techniquesXie et al392012/NIPSStacked sparse denoising Auto-encoders
      Pathak et al402016/CVPRContext encoder to capture more semantic information
      Iizuka et al412017/ACMGlobal and local context discriminators added to the auto-encoder
      Yu et al442018/CVPRA parallel encoder model based on attention mechanism
      Sagong et al452019/CVPRA shared encoding network with two parallel decoding tasks
      Shin et al462020/NNLSAdaptive dilated convolutional layers added to PEPSI45 model
      Yang et al472017/CVPRMulti-scale neural patch synthesis approach
      Yan et al492018/ECCVA special shift-connection layer Shift-Net
      Liu et al512018/ECCVA partial convolution structure based on U-Net structure
      Xie et al532019/ICCVA learnable bidirectional attention module which can automatically update the mask
      Liu et al542019/ICCVA network architecture based on coherent attention mechanism layer
      Nazeri et al562019/ArxivA two-stage adversarial model EdgeConnect
      Li et al572019/ICCVA progressive reconstruction of visual structure network
      Ren et al582019/ICCVA novel two-stage network which can generate texture structures consistent with context semantics
      Zeng et al622019/CVPRA pyramid context encoder network combining high-level semantics and texture information
      Yi et al632020/CVPRA context residual aggregation network for high resolution image inpainting
      Li et al642020/CVPRA cyclic feature inference network for recovering the large missing regions of damaged images
      GAN-based techniquesRadford et al652015/ArxivDCGANs combining Convolutional Neural Network(CNN)and unsupervised learning
      Isola et al552017/CVPRPatchGAN based on patch identification
      Yeh et al662017/CVPRDGMs to repair irregular regions and capture richer semantics
      Lou et al682018/PRRSRMSProp optimization algorithm is added to WGAN to maintain good performance on non-convex problems
      Yu et al692019/ICCVSN-Patch GAN network based on gated convolution to improve the details and semantic accuracy of repaired results
      Wang et al702021/IEEEThe validity transfer convolution and region compound normalization modules to realize the dynamic selection of valid information
      Zheng et al722019/CVPRPIC NET to generate a variety of repair results
      Zhao et al732020/CVPRAn unsupervised cross-space translation generative adversarial network
    • Table 3. Quantitative evaluation results of algorithms on common datasets

      View table

      Table 3. Quantitative evaluation results of algorithms on common datasets

      DatasetMethodPSNRSSIMFIDMAEMSESize of imageMask type(image-to-mask ratio)
      CelebA-HQSagong et al4525.600.90256×256Square(25%)
      28.600.92256×256Irregular
      Shin et al4625.500.89256×256Square(25%)
      28.500.92256×256Irregular
      Liu et al5434.690.980.720.04256×256Irregular(10%-20%)
      32.580.980.940.07256×256Irregular(20%-30%)
      25.320.922.180.37256×256Irregular(30%-40%)
      24.140.882.850.44256×256Irregular(40%-50%)
      26.540.931.830.27256×256Square(25%)
      Li et al5733.560.980.007256×256Irregular(10%-20%)
      27.760.930.02256×256Irregular(30%-40%)
      22.880.810.047256×256Irregular(50%-60%)
      Zhao et al7326.380.881.51256×256Irregular(10%-20%)
      Place2Yu et al4418.918.602.10256×256Irregular(10%-20%)
      Liu et al5133.750.940.49256×256Irregular(1%-10%)
      27.710.861.18256×256Irregular(10%-20%)
      24.540.772.07256×256Irregular(20%-30%)
      22.010.683.19256×256Irregular(30%-40%)
      20.340.534.37256×256Irregular(40%-50%)
      18.210.466.45256×256Irregular(50%-60%)
      Xie et al3925.590.781.93256×256Irregular(20%-30%)
      Liu et al5427.750.930.01256×256Square(25%)
      Nazeri et al5621.750.828.163.86256×256Irregular(25%)
      24.920.864.912.59256×256Irregular(20%-30%)
      Li et al6427.750.930.014256×256Irregular(10%-20%)
      22.630.810.038256×256Irregular(30%-40%)
      18.920.590.076256×256Irregular(50%-60%)
      Ren et al5825.220.907.03256×256Irregular(20%-40%)
      Zeng et al620.7815.199.94256×256Square(25%)
      Yi et al634.895.43512×512Irregular
      4.895.431024×1024Irregular
      4.895.492048×2048Irregular
      4.895.504096×4096Irregular
      Paris Street ViewPathak et al4017.590.100.23128×128Square(25%)
      Yang et al4718.000.23128×128Square(25%)
      Yan et al4926.510.900.02256×256Irregular(10%-20%)
      Li et al5731.710.950.011256×256Irregular(10%-20%)
      26.440.860.027256×256Irregular(30%-40%)
      22.400.680.054256×256Irregular(50%-60%)
    Tools

    Get Citation

    Copy Citation Text

    Xuetao Li, Yaoxiong Wang, Fang Gao. Review of Image Inpainting Methods[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0200002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Oct. 8, 2021

    Accepted: Nov. 11, 2021

    Published Online: Jan. 3, 2023

    The Author Email: Fang Gao (fgao@gxu.edu.cn)

    DOI:10.3788/LOP212680

    Topics