Journal of the Chinese Ceramic Society, Volume. 50, Issue 11, 2924(2022)
Anti-Shedding and Carbon Monoxide Catalytic Removal of Flue Gas of Structural Catalyst
[2] [2] ZHANG Xu, PENG Sijia, YANG Yaqi, et al. J Chin Ceram Soc, 2021, 49(10): 2221-2232.
[3] [3] SUBHASHISH D, CHANDRA D G, DEVENDRA M, et al. Ambient temperature complete oxidation of carbon monoxide using hopcalite catalysts for fire escape mask applications[J]. Adv Compos Hybrid Mater, 2019, 2(3): 501-519.
[4] [4] LI Y N, GAN L, SI R. Effect of tungsten oxide on ceria nanorods to support copper species as CO oxidation catalysts[J]. J Rare Earths, 2021, 39(1): 43-50.
[5] [5] GUAN H L, CHEN Y, RUAN C Y, et al. Versatile application of wet-oxidation for ambient CO abatement over Fe(OH)x supported subnanometer platinum group metal catalysts[J]. Chin J Catal, 2020, 41(4): 613-621.
[6] [6] TANG W X, LU X X, LIU F Y, et al. Ceria-based nanoflake arrays integrated on 3D cordierite honeycombs for efficient low-temperature diesel oxidation catalyst[J]. Appl Catal B, 2019, 245: 623-634.
[8] [8] LI Jichao. Catalytic Combustion of Methane on Structural Catalysts Supported on Metal Foams (in Chinese, dissertation). Guangdong: South China University of Technology, 2012.
[10] [10] LIU Yiming, LIU Huayan, ZHANG Zekai, et al. J Chin Ceram Soc, 2015, 43(7): 926-933.
[11] [11] XIAO B, ZHAO K F, ZHANG L, et al. A green and facile synthesis of Co3O4 monolithic catalyst with enhanced total oxidation of propane performance[J]. Catal Commun, 2018, 116: 1-4.
[12] [12] XUE T S, LI R, GAO Y S, et al. Iron mesh-supported vertically aligned Co-Fe layered double oxide as a novel monolithic catalyst for catalytic oxidation of toluene[J]. Chem Eng J, 2020, 384(C): 123284-123284.
[13] [13] KUCHARCZYK B. Catalytic oxidation of carbon monoxide on Pd-Containing LaMnO3 perovskites[J]. Catal Lett, 2015, 145(6): 1237-1245.
[14] [14] WU D F, KONG S S, ZHANG H. Mechanical stability of monolithic catalysts: Factors affecting washcoat adhesion and cohesion during preparation[J]. Aiche J, 2014, 60(8): 2765-2773.
[15] [15] DEY S, DHAL G C, MOHAN D, et al. Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide[J]. Appl Surf Sci, 2018, 441: 303-316.
[16] [16] LIU Y, GUO Y, PENG H G, et al. Modifying Hopcalite catalyst by SnO2 addition: An effective way to improve its moisture tolerance and activity for low temperature CO oxidation[J]. Appl Catal A-Gen, 2016, 525: 204-214.
[17] [17] MYTAREVA A I, BOKAREV D A, KRIVORUCHENKO D S, et al. Improvement of low-temperature activity of febeta monolith catalyst in NH3-SCR of NOx[J]. Top Catal, 2019, 62(1-4): 86-92.
[18] [18] GAO X C, ZHAO Y J, WANG S P, et al. A Pd-Fe/α-Al2O3 /cordierite monolithic catalyst for CO coupling to oxalate[J]. Chem Eng Sci, 2011, 66(15): 3513-3522.
[20] [20] WU Yong, ZHOU Mingming, YUE Hairong. Appl Chem Ind(in Chinese), 2017, 46(2): 208-212.
[21] [21] KONDRAT S A, DAVIES T E, ZU Z L, et al. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation[J]. J Catal, 2011, 281(2): 279-289.
[22] [22] CLARKE T J, KONDRAT S A, TAYLOR S H. Total oxidation of naphthalene using copper manganese oxide catalysts[J]. Catal Today, 2015, 258: 610-615.
[24] [24] LIU Xiaofang, ZHANG Feng, SUN Huajun, et al. J Funct Mater (in Chinese), 2003(1): 88-90.
[25] [25] LI X, LI Q, LI W, et al. Enhancement of SCR performance of monolithic Mn-Ce/Al2O3/cordierite catalysts by using modified deposition precipitation method[J]. Asia-Pac J Chem Eng, 2019, 14(4): 2318.
[26] [26] YUAN R, JIANG Z, WANG Z, et al. Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: A novel micro-macro catalyst for peroxymonosulfate activation[J]. J Colloid Interf Sci, 2020, 571: 142-154.
[27] [27] WEI L, CUI S P, GUO H X, et al. The mechanism of the deactivation of MnOx/TiO2 catalyst for low-temperature SCR of NO[J]. Appl Surf Sci, 2019, 483: 391-398.
[28] [28] FRIKHA K, LIMOUSY L, BOUAZIZ J, et al. Binary oxides prepared by microwave-assisted solution combustion: synthesis, characterization and catalytic activity[J]. Materials, 2019, 12(6): 910.
[29] [29] SUN J F, ZHANG L, GE C Y, et al. Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation[J]. Chin J Catal, 2014, 35(8): 1347-1358.
[30] [30] LIU P, WEI G L, HE H P, et al. The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides: Catalytic deactivation and regeneration[J]. Appl Surf Sci, 2018, 464: 287-293.
[31] [31] RAMESH K, CHEN L W, CHEN F X, et al. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts[J]. Catal Today, 2008, 131(1-4): 477-482.
[32] [32] SHIKINA N V, YASHNIK S A, GAVRILOVA A A, et al. Effect of glycine addition on physicochemical and catalytic properties of Mn, Mn-La and Mn-Ce monolithic catalysts prepared by solution combustion synthesis[J]. Catal Lett, 2019, 149(9): 2535-2551.
[33] [33] WANG S, YAN L H, ZHAO Y S, et al. Honeycomb porous carbon frameworks from wheat flour as supports for CuxO-CeO2 monolithic catalysts[J]. Appl Surf Sci, 2019, 464: 294-300.
[34] [34] JIANG X D, XU W C, LAI S F, et al. Integral structuredCo-Mn composite oxides grown on interconnected Ni foam for catalytic toluene oxidation[J]. RSC Adv, 2019, 9(12): 6533-6541.
[35] [35] ZHANG C H, WANG C, HUA W C, et al. Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride[J]. Appl Catal B, 2016, 186: 173-183.
[36] [36] MITRA B, KUNZRU D. Washcoating of different zeolites on cordierite monoliths[J]. J Am Ceram Soc, 2008, 91(1): 64-70.
[38] [38] ZHANG Lei, WANG Sheng, WANG Mingzhe, et al. Ind Catal (in Chinese), 2020, 28(1): 17-23.
[39] [39] YAO X M, TAN S H, ZHANG X Y, et al. Low-temperature sintering of SiC reticulated porous ceramics with MgO-Al2O3-SiO2 additives as sintering aids[J]. J Mater Sci. 2007, 42(13): 4960-4966.
[40] [40] VERGUNST T, KAPTEIJN F, MOULIJN J A. Monolithic catalysts - non-uniform active phase distribution by impregnation[J]. Appl Catal A-GEN, 2001, 213(2): 179-187.
[41] [41] RITCHIE Robert O. and LIU Dong. Introduction to Fracture Mechanics[M]. Elsevier Inc, 2021: 101-130.
[42] [42] WU D F, ZHANG H. Mechanical stability of monolithic catalysts: scattering of washcoat adhesion and failure mechanism of active material[J]. Ind Eng Chem Res, 2013, 52(41): 14713-14721.
[43] [43] ISIK A, OZDEMIR M, DOYMAZ I. Investigation of microwave drying on quality attributes, sensory properties and surface structure of bee pollen grains by scanning electron microscopy[J]. Brazil J Chem Eng, 2021, 38: 177-188.
[45] [45] LIU Pengfei, LOU Xiaorong, HE Kai, et al. J Mol Catal (in Chinese), 2014, 28(3): 227-233.
[46] [46] ZHAN L X, YANG Y, LI W, et al. Drying kinetics and mechanical properties of low temperature microwave dried cashmere fibers[J]. Text Res J, 2020, 90(23-24): 004051752092936.
[47] [47] AGRAFIOTIS C, TSETSEKOU A, EKONOMAKOU A. The effect of particle size on the adhesion properties of oxide washcoats on cordierite honeycombs[J]. J Mater Sci Lett, 1999, 18(17): 1421-1424.
[48] [48] QI J Z, SUN Y P, XIE Z L, et al. Development of Cu foam-based Ni catalyst for solar thermal reforming of methane with carbon dioxide[J]. J Energy Chem, 2015, 24(6): 786-793.
[49] [49] DEY S, DHAL G C, MOHAN D, et al. Low-temperature complete oxidation of CO over various manganese oxide catalysts[J]. Atmospheric Pollut Res, 2018, 9(4): 755-763.
[50] [50] GUO Z X, DENG Y Z, LI W H, et al. Monolithic Mn/Ce-based catalyst of fibrous ceramic membrane for complete oxidation of benzene[J]. Appl Surf Sci, 2018, 456: 594-601.
[51] [51] MORGAN K, COLE K J, GOGUET A, et al. TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts[J]. J Catal, 2010, 276(1): 38-48.
[52] [52] LONG G Y, CHEN M X, LI Y J, et al. One-pot synthesis of monolithic Mn-Ce-Zr ternary mixed oxides catalyst for the catalytic combustion of chlorobenzene[J]. Chem Eng J, 2019, 360: 964-973.
[53] [53] ZANG M, ZHAO C C, WANG Y W, et al. Low temperature catalytic combustion of toluene over three-dimensionally ordered La0.8Ce0.2MnO3/cordierite catalysts[J]. Appl Surf Sci, 2019, 483: 355-362.
[54] [54] CAO C M, XING L L, YANG Y X, et al. Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode[J]. Appl Catal B, 2017, 218: 32-45.
[55] [55] LIN J, GUO Y F, LI C H, et al. A Comparative study of supported and bulk Cu-Mn-Ce composite oxide catalysts for low-temperature CO oxidation[J]. Catal Lett, 2018, 148(8): 2348-2358.
[57] [57] ZHOU Hao, CHENG Yi, ZHOU Mingxi, et al. Chin J Eng(in Chinese), 2020, 42(1): 70-77.
[58] [58] XU X L, SUN X F, HAN H, et al. Improving water tolerance of Co3O4 by SnO2 addition for CO oxidation[J]. Appl Surf Sci, 2015, 355(C): 1254-1260.
Get Citation
Copy Citation Text
ZHANG Xuan, LIU Yingshu, HOU Huanyu, BIAN Wenbo, JIANG Lijun, ZHANG Chuanzhao, SUN Fangzhou, YANG Xiong, LI Ziyi. Anti-Shedding and Carbon Monoxide Catalytic Removal of Flue Gas of Structural Catalyst[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2924
Category:
Received: May. 6, 2022
Accepted: --
Published Online: Jan. 27, 2023
The Author Email: ZHANG Xuan (xuanz0310@163.com)