Chinese Journal of Lasers, Volume. 49, Issue 12, 1201006(2022)

850 nm Single-Mode Surface-Emitting Distributed Feedback Lasers

Nanguo Li1, Can Liu2,3、*, Pengfei Zhang1, Minwen Xiang1, Bao Tang4, Weinian Yan5, Qiang Kan5, Qiaoyin Lu1、**, and Weihua Guo1、***
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Ori-Chip Optoelectronics Technology Co., Ltd., Ningbo 315000, Zhejiang, China
  • 3College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • 4Accelink Technologies Co., Ltd., Wuhan 430074, Hubei, China
  • 5Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    Figures & Tables(16)
    Three-dimensional structure of SEDFB laser
    Cross-sectional sketch of SEDFB laser
    Schematic of grating structure and top transmission spectra of the second-order grating with or without λ/4 phase shift. (a) Schematic of grating structure; (b) top transmission spectra of the second-order grating
    Cross-sectional sketch of shallow ridge waveguide
    Variation curves of transverse refractive index difference and single-mode cut-off waveguide width with ridge waveguide depth Hr and spacer thickness Hs. (a) Transverse refractive index difference; (b) single-mode cut-off waveguide width
    Variation curves of coupling coefficient and optical confinement factor with ridge waveguide depth Hr and grating etching depth Hg. (a) Coupling coefficient; (b) optical confinement factor
    Schematic of the ridge waveguide structure. (a) Part of unetched grating; (b) part of etched grating
    Contour plots of optical confinement factor and coupling coefficient. (a) Optical confinement factor; (b) coupling coefficient
    Production process of SEDFB laser. (a) Fabrication of etching marks; (b) etching contact layer fabricated by wet method; (c) fabrication of surface grating; (d) fabrication of ridge waveguide structure; (e) fabrication of oxidation table; (f) oxidized aperture fabricated by wet oxidation method; (g) fabrication of upper electrode; (h) thinning and fabricating lower electrode
    SEDFB laser fabrication result diagrams. (a) SEM image of deeply etched ridge waveguide; (b) surface grating SEM image; (c) cross-sectional SEM image of oxidized aperture; (d) optical micrograph of SEDFB laser; (e) SEM image of SEDFB laser
    SEDFB laser static characteristic curves. (a) L-I-V curves of SEDFB lasers with different active region lengths; (b) spectra of SEDFB lasers under different injection currents
    Laser spectra. (a) Spectra of SEDFB laser at different TEC temperatures; (b) laser spectra with different first-order grating periods
    Simulation results of SEDFB laser light field. (a) Near-field pattern; (b) light field intensity along the longitudinal direction of the near field pattern; (c) far-field pattern
    Test results of SEDFB laser light field. (a) SEDFB laser output pattern; (b) test and fitting results of far-field divergence angle of SEDFB laser
    Measured small signal modulation responses of SEDFB lasers with different active section lengths. (a) 150 μm; (b) 50 μm
    • Table 1. Parameters of SEDFB laser epitaxy structure

      View table

      Table 1. Parameters of SEDFB laser epitaxy structure

      Layer No.Layer nameMaterialThickness /μmDoping concentration /cm-3Dopant
      15Top contact layern-GaAs0.1501×1019Si
      14Upper cladding layern-Al0.26Ga0.74As0.2001×1018Si
      13Upper cladding layern-Al0.30Ga0.70As0.0503×1018Si
      12Upper cladding layern-Al0.34Ga0.66As0.0505×1017Si
      11Optical confinement layerAl0.37Ga0.63As0.040
      10Barriers (×4)Al0.37Ga0.63As0.006
      9Quantum wells (×5)In0.07Ga0.93As0.004
      8Optical confinement layerAl0.37Ga0.63As0.040
      7Lower cladding layerp-Al0.70Ga0.30As0.0502×1017C
      6Lower cladding layerp-Al0.70Ga0.30As0.0505×1017C
      5Oxide layerAl0.96Ga0.04As0.0601×1018C
      4Lower cladding layerp-Al0.70Ga0.30As2.0001×1018C
      3p-doped tunnel junction layerp-GaAs0.250>1×1019C
      2n-doped tunnel junction layern-GaAs0.250>1×1019Si
      1Buffer layern-GaAs0.5003×1018Si
      0n-doped substraten-GaAs
    Tools

    Get Citation

    Copy Citation Text

    Nanguo Li, Can Liu, Pengfei Zhang, Minwen Xiang, Bao Tang, Weinian Yan, Qiang Kan, Qiaoyin Lu, Weihua Guo. 850 nm Single-Mode Surface-Emitting Distributed Feedback Lasers[J]. Chinese Journal of Lasers, 2022, 49(12): 1201006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jan. 27, 2022

    Accepted: Mar. 30, 2022

    Published Online: Jun. 13, 2022

    The Author Email: Can Liu (liuc@ori-chip.com), Qiaoyin Lu (luqy@hust.edu.cn), Weihua Guo (guow@hust.edu.cn)

    DOI:10.3788/CJL202249.1201006

    Topics