Frontiers of Optoelectronics, Volume. 17, Issue 3, 29(2024)

Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid

Zhang Xinxian, Song Jiawei, Fan Jiahao, Zeng Nan, He Honghui, Tuchin Valery V., and Ma Hui
References(51)

[1] [1] He, H., Liao, R., Zeng, N., Li, P., Chen, Z., Liu, X., Ma, H.: Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol. 37(11), 2534–2548 (2019)

[2] [2] Qi, J., Elson, D.S.: Mueller polarimetric imaging for surgical and diagnostic applications: a review. J. Biophotonics 10(8), 950–982 (2017)

[3] [3] Tuchin, V.V.: Polarized light interaction with tissues. J. Biomed. Opt. 21(7), 071114 (2016)

[4] [4] Qiu, L., Pleskow, D.K., Chuttani, R., Vitkin, E., Leyden, J., Ozden, N., Itani, S., Guo, L., Sacks, A., Goldsmith, J.D., Modell, M.D., Hanlon, E.B., Itzkan, I., Perelman, L.T.: Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus. Nat. Med. 16(5), 603–606 (2010)

[5] [5] Gurjar, R.S., Backman, V., Perelman, L.T., Georgakoudi, I., Badizadegan, K., Itzkan, I., Dasari, R.R., Feld, M.S.: Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7(11), 1245–1248 (2001)

[6] [6] Alali, S., Vitkin, A.: Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment. J. Biomed. Opt. 20(6), 061104 (2015)

[7] [7] Shih-Yau, L., Chipman, R.A.: Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 13(5), 1106 (1996)

[8] [8] Ghosh, N., Wood, M.F.G., Vitkin, I.A.: Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J. Biomed. Opt. 13(4), 044036 (2008)

[9] [9] He, H., Zeng, N., Du, E., Guo, Y., Li, D., Liao, R., Ma, H.: A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mgliche quantitative Mller-Matrix-Transformations-Technik fr anisotrope streuende Medien. Photon. Lasers Med. 2(2), 129–137 (2013)

[10] [10] Tuchin, V.V., Wang, L.V., Zimnyakov, D.A.: Optical polarization in biomedical applications. Springer, Berlin; New York (2006)

[11] [11] Lien, C.H., Chen, Z.H., Phan, Q.H.: Birefringence effect studies of collagen formed by nonenzymatic glycation using dual-retarder Mueller polarimetry. J. Biomed. Opt. 27(8), 087001 (2022)

[12] [12] Dong, Y., Wan, J., Si, L., Meng, Y., Dong, Y., Liu, S., He, H., Ma, H.: Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues. IEEE Trans. Biomed. Eng. 68(3), 881–892 (2021)

[13] [13] Zaffar, M., Pradhan, A.: Assessment of anisotropy of collagen structures through spatial frequencies of Mueller matrix images for cervical pre-cancer detection. Appl. Opt. 59(4), 1237 (2020)

[14] [14] Du, E., He, H., Zeng, N., Sun, M., Guo, Y., Wu, J., Liu, S., Ma, H.: Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt. 19(7), 076013 (2014)

[15] [15] Dong, Y., Wan, J., Wang, X., Xue, J.H., Zou, J., He, H., Li, P., Hou, A., Ma, H.: A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging 40(12), 3728–3738 (2021)

[16] [16] Ahmad, I., Ahmad, M., Khan, K., Ashraf, S., Ahmad, S., Ikram, M.: Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt. 20(5), 056012 (2015)

[17] [17] Ivanov, D., Dremin, V., Bykov, A., Borisova, E., Genova, T., Popov, A., Ossikovski, R., Novikova, T., Meglinski, I.: Colon cancer detection by using Poincar sphere and 2D polarimetric mapping of ex vivo colon samples. J. Biophoton. 13(8), e202000082 (2020)

[18] [18] Le, D.L., Nguyen, D.T., Le, T.H., Phan, Q.H., Pham, T.T.H.: Characterization of healthy and cancerous human skin tissue utilizing Stokes-Mueller polarimetry technique. Opt. Commun. 480, 126460 (2021)

[19] [19] Ushenko, Yu.A., Dubolazov, O.V., Karachevtsev, A.O.: Statistical structure of skin derma Mueller matrix images in the process of cancer changes. Opt. Mem. Neural. Netw. 20(2), 145–154 (2011)

[20] [20] Kim, M., Lee, H.R., Ossikovski, R., Malfait-Jobart, A., Lamarque, D., Novikova, T.: Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis. J. Eur. Opt. Soc. Rapid Publ. 18(2), 10 (2022)

[21] [21] Wang, W., Lim, L.G., Srivastava, S., Bok-Yan So, J., Shabbir, A., Liu, Q.: Investigation on the potential of Mueller matrix imaging for digital staining. J. Biophoton. 9(4), 364–375 (2016)

[22] [22] Kodela, R., Vanagala, P.: Polarimetric parameters to categorize normal and malignant thyroid tissue. J. Inst. Electron. Telecommun. Eng. 63(6), 893–897 (2017)

[23] [23] He, H., Sun, M., Zeng, N., Du, E., Liu, S., Guo, Y., Wu, J., He, Y., Ma, H.: Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging. J. Biomed. Opt. 19(10), 106007 (2014)

[24] [24] He, C., Chang, J., Salter, P., Shen, Y., Dai, B., Li, P., Jin, Y., Thodika, S., Li, M., Tariq, A., Wang, J., Antonello, J., Dong, Y., Qi, J., Lin, J., Elson, D., Zhang, M., He, H., Hui Ma, H., Booth, M.: Revealing complex optical phenomena through vectorial metrics. Adv. Photon. 4(2), 026001 (2022)

[25] [25] Wang, Y., He, H., Chang, J., He, C., Liu, S., Li, M., Zeng, N., Wu, J., Ma, H.: Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt. 21(7), 071112 (2016)

[26] [26] Chen, B., Li, W., He, H., He, C., Guo, J., Shen, Y., Liu, S., Sun, T., Wu, J., Ma, H.: Analysis and calibration of linear birefringence orientation parameters derived from Mueller matrix for multilayered tissues. Opt. Lasers Eng. 146, 106690 (2021)

[27] [27] Dong, Y., Qi, J., He, H., He, C., Liu, S., Wu, J., Elson, D.S., Ma, H.: Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express 8(8), 3643 (2017)

[28] [28] He, C., Chang, J., Hu, Q., Wang, J., Antonello, J., He, H., Liu, S., Lin, J., Dai, B., Elson, D.S., Xi, P., Ma, H., Booth, M.J.: Complex vectorial optics through gradient index lens cascades. Nat. Commun. 10(1), 4264 (2019)

[29] [29] Sun, M., He, H., Zeng, N., Du, E., Guo, Y., Liu, S., Wu, J., He, Y., Ma, H.: Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express 5(12), 4223 (2014)

[30] [30] Song, J., Zeng, N., Guo, W., Guo, J., Ma, H.: Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomed. Opt. Express 12(8), 4821 (2021)

[31] [31] Zhai, H., Sun, Y., He, H., Chen, B., He, C., Wang, Y., Ma, H.: Distinguishing tissue structures via polarization staining images based on different combinations of Mueller matrix polar decomposition parameters. Opt. Lasers Eng. 152, 106955 (2022)

[32] [32] Rodrguez-Nez, O., Schucht, P., Hewer, E., Novikova, T., Pierangelo, A.: Polarimetric visualization of healthy brain fiber tracts under adverse conditions: ex vivo studies. Biomed. Opt. Express 12(10), 6674 (2021)

[33] [33] Borovkova, M., Bykov, A., Popov, A., Pierangelo, A., Novikova, T., Pahnke, J., Meglinski, I.: Evaluating -amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Express 11(8), 4509 (2020)

[34] [34] Zhang, Z., Hao, R., Shao, C., Mi, C., He, H., He, C., Du, E., Liu, S., Wu, J., Ma, H.: Analysis and optimization of aberration induced by oblique incidence for in-vivo tissue polarimetry. Opt. Lett. 48(23), 6136 (2023)

[35] [35] Kunnen, B., Macdonald, C., Doronin, A., Jacques, S., Eccles, M., Meglinski, I.: Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics 8(4), 317–323 (2015)

[36] [36] Chen, Y., Chu, J., Lin, F., Jiang, B., Liu, Y., Huang, B., Zhang, R., Xin, B., Ding, X.: Polarization clustering of biological structures with Mueller matrix parameters. J. Biophoton. 16(2), e202200255 (2023)

[37] [37] Borovkova, M.A., Bykov, A.V., Popov, A., Meglinski, I.V.: Role of scattering and birefringence in phase retardation revealed by locus of Stokes vector on Poincar sphere. J. Biomed. Opt. 25(5), 1 (2020)

[38] [38] MacKintosh, F.C., Zhu, J.X., Pine, D.J., Weitz, D.A.: Polarization memory of multiply scattered light. Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989)

[39] [39] Sankaran, V., Walsh, J.T., Maitland, D.J.: Comparative study of polarized light propagation in biologic tissues. J. Biomed. Opt. 7(3), 300 (2002)

[40] [40] Singh, M.D., Vitkin, I.A.: Discriminating turbid media by scatterer size and scattering coefficient using backscattered linearly and circularly polarized light. Biomed. Opt. Express 12(11), 6831 (2021)

[41] [41] Sun, P., Ma, Y., Liu, W., Xu, C., Sun, X.: Experimentally determined characteristics of the degree of polarization of backscattered light from polystyrene sphere suspensions. J. Opt. 15(5), 055708 (2013)

[42] [42] Ossikovski, R., Gil, J.J., San Jos, I.: Poincar sphere mapping by Mueller matrices. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 30(11), 2291 (2013)

[43] [43] Azzam, R.M.A.: Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2(6), 148 (1978)

[44] [44] Goldstein, D.H.: Mueller matrix dual-rotating retarder polarimeter. Appl. Opt. 31(31), 6676 (1992)

[45] [45] Goldstein, D.H., Chipman, R.A.: Error analysis of a Mueller matrix polarimeter. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 7(4), 693 (1990)

[46] [46] Du, E., He, H., Zeng, N., Guo, Y., Liao, R., He, Y., Ma, H.: Two-dimensional backscattering Mueller matrix of sphere–cylinder birefringence media. J. Biomed. Opt. 17(12), 126016 (2012)

[47] [47] Yun, T., Zeng, N., Li, W., Li, D., Jiang, X., Ma, H.: Monte Carlo simulation of polarized photon scattering in anisotropic media. Opt. Express 17(19), 16590 (2009)

[48] [48] Song, J., Zeng, N., Ma, H., Tuchin, V.V.: A rapid stokes imaging method for characterizing the optical properties of tissue during immersion optical clearing. IEEE J. Sel. Top. Quantum Electron. 29(4), 1–9 (2023)

[49] [49] Liu, Z., Song, J., Fu, Q., Zeng, N., Ma, H.: Study on anisotropy orientation due to well-ordered fibrous biological microstructures. J. Biomed. Opt. 29(5), 052919 (2024)

[50] [50] Song, J., Fu, Q., Zeng, N., Ma, H.: Microstructural characterization of biological tissues based on sequential Stokes polarization images during dehydration. Opt. Lasers Eng. 177, 108142 (2024)

[51] [51] Song, J., Guo, W., Zeng, N., Ma, H.: Polarization phase unwrapping by a dual-wavelength Mueller matrix imaging system. Opt. Lett. 48(8), 2058 (2023)

Tools

Get Citation

Copy Citation Text

Zhang Xinxian, Song Jiawei, Fan Jiahao, Zeng Nan, He Honghui, Tuchin Valery V., Ma Hui. Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid[J]. Frontiers of Optoelectronics, 2024, 17(3): 29

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: RESEARCH ARTICLE

Received: May. 31, 2024

Accepted: Dec. 11, 2024

Published Online: Dec. 11, 2024

The Author Email:

DOI:10.1007/s12200-024-00132-4

Topics