Acta Optica Sinica, Volume. 39, Issue 7, 0728001(2019)

Zero-Shot Classification for Remote Sensing Scenes Based on Locality Preservation

Chen Wu1, Hongwei Wang2, Zhiqiang Wang2, Yuwei Yuan3, Yu Liu2, Hong Cheng2, and Jicheng Quan2、*
Author Affiliations
  • 1 University of Naval Aviation, Yantai, Shandong 264000, China
  • 2 Aviation University of Air Force, Changchun, Jilin 130022, China
  • 3 The 91977 of Peoples Liberation Army of China, Beijing 102200, China
  • show less
    References(26)

    [5] Xian Y Q, Akata Z, Sharma G et al. Latent embeddings for zero-shot classification. [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 69-77(2016).

    [6] Wang D H, Li Y, Lin Y T et al. Relational knowledge transfer for zero-shot learning. [C]//Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), February 12-17, 2016, Phoenix, Arizona, USA. California: AAAI Publications, 2145-2151(2016).

    [7] Zhang Z M, Saligrama V. Zero-shot learning via joint latent similarity embedding. [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 6034-6042(2016).

    [8] Zhang Z M, Saligrama V. Zero-shot learning via semantic similarity embedding. [C]//2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 4166-4174(2015).

    [10] Li Y N, Wang D H, Hu H H et al. Zero-shot recognition using dual visual-semantic mapping paths. [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 5207-5215(2017).

    [11] Kodirov E, Xiang T, Fu Z Y et al. Unsupervised domain adaptation for zero-shot learning. [C]//2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 2452-2460(2015).

    [12] Guo Y C, Ding G G, Jing X M et al. Transductive zero-shot recognition via shared model space learning. [C]//Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. California: AAAI Publications, 3494-3500(2016).

    [13] Fu Y W, Hospedales T M, Xiang T et al. Transductive multi-view embedding for zero-shot recognition and annotation[M]. //Fleet D, Pajdla T, Schiele B, et al. Lecture notes in computer science 2014. Cham: Springer, 8690, 584-599(2014).

    [21] Fernando B, Fromont E, Muselet D et al. Discriminative feature fusion for image classification. [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 3434-3441(2012).

    [23] Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification. [C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2-5, 2010, San Jose, California. New York: ACM, 270-279(2010).

    [25] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions. [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, 2015, Boston, MA, USA. New York: IEEE, 7298594(2015).

    Tools

    Get Citation

    Copy Citation Text

    Chen Wu, Hongwei Wang, Zhiqiang Wang, Yuwei Yuan, Yu Liu, Hong Cheng, Jicheng Quan. Zero-Shot Classification for Remote Sensing Scenes Based on Locality Preservation[J]. Acta Optica Sinica, 2019, 39(7): 0728001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 21, 2019

    Accepted: Mar. 21, 2019

    Published Online: Jul. 16, 2019

    The Author Email: Jicheng Quan (jicheng_quan@126.com)

    DOI:10.3788/AOS201939.0728001

    Topics