Chinese Optics, Volume. 15, Issue 4, 845(2022)
Slow light in graphene plasmonic time crystals
[1] JIANG X P, CHEN D B, ZHANG ZH J, et al. Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface[J]. Optics Express, 28, 34079-34092(2020).
[2] TORRIJOS-MORÁN L, GRIOL A, GARCÍA-RUPÉREZ J, et al. Slow light bimodal interferometry in one-dimensional photonic crystal waveguides[J]. Light:Science & Applications, 10, 16(2021).
[3] OSSIANDER M, HUANG Y W, CHEN W T, et al. Slow light nanocoatings for ultrashort pulse compression[J]. Nature Communications, 12, 6518(2021).
[4] YAN S Q, ZHU X L, FRANDSEN L H, et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides[J]. Nature Communications, 8, 14411(2017).
[5] ZHU K T, DENG T S, SUN Y, et al. Slow light property in ring-shape-hole slotted photonic crystal waveguide[J]. Optics Communications, 290, 87-91(2013).
[6] SCHEUER J. Optimal interfacing with coupled-cavities slow-light waveguides: mimicking periodic structures with a compact device[J]. Optics Express, 25, 16260-16273(2017).
[7] CHEN H J. Multiple-Fano-resonance-induced fast and slow light in the hybrid nanomechanical-resonator system[J]. Physical Review A, 104, 013708(2021).
[8] NOTOMI M, YAMADA K, SHINYA A, et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs[J]. Physical Review Letters, 87, 253902(2001).
[9] ITO H, KUSUNOKI Y, MAEDA J, et al. Wide beam steering by slow-light waveguide gratings and a prism lens[J]. Optica, 7, 47-52(2020).
[10] DONG J W, CHEN X D, ZHU H Y, et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 16, 298-302(2017).
[11] YOSHIMI H, YAMAGUCHI T, OTA Y, et al. Slow light waveguides in topological valley photonic crystals[J]. Optics Letters, 45, 2648-2651(2020).
[12] KHANIKAEV A B, SHVETS G. Two-dimensional topological photonics[J]. Nature Photonics, 11, 763-773(2017).
[13] LUSTIG E, SHARABI Y, SEGEV M. Topological aspects of photonic time crystals[J]. Optica, 5, 1390-1395(2018).
[14] WANG N, ZHANG ZH Q, CHAN C T. Photonic Floquet media with a complex time-periodic permittivity[J]. Physical Review B, 98, 085142(2018).
[15] GIERGIEL K, DAUPHIN A, LEWENSTEIN M, et al. Topological time crystals[J]. New Journal of Physics, 21, 052003(2019).
[16] GANGARAJ S A H, MONTICONE F. Topological waveguiding near an exceptional point: defect-immune, slow-light, and loss-immune propagation[J]. Physical Review Letters, 121, 093901(2018).
[17] JIN D F, CHRISTENSEN T, SOLJAČIĆ M, et al. Infrared topological plasmons in graphene[J]. Physical Review Letters, 118, 245301(2017).
[18] WANG Y P, YOU J W, LAN ZH H, et al. Topological valley plasmon transport in bilayer graphene metasurfaces for sensing applications[J]. Optics Letters, 45, 3151-3154(2020).
[19] GUO X, WU X, CUI H, et al. Slow light performance enhancement of graphene-based photonic crystal waveguide[J]. Physics Letters A, 383, 1983-1987(2019).
[20] XIONG L, FORSYTHE C, JUNG M, et al. Photonic crystal for graphene plasmons[J]. Nature Communications, 10, 4780(2019).
[21] WU X X, YAN M, TIAN J X, et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals[J]. Nature Communications, 8, 1304(2017).
[22] YOU J W, LAN ZH H, BAO Q L, et al. Valley-Hall topological plasmons in a graphene nanohole plasmonic crystal waveguide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 4600308(2020).
[23] HAO Y, KONG M, LU J. Control of light speed in single-ring microresonators with gain[J]. Chinese Optics, 2, 482-488(2009).
[24] CAO T, FANG L H, CAO Y, et al. Dynamically reconfigurable topological edge state in phase change photonic crystals[J]. Science Bulletin, 64, 814-822(2019).
[25] HONG W, WANG L Q, LIN J P. Research progress of polymeric hierarchical microstructures and their properties[J]. Chinese Journal of Applied Chemistry, 38, 1310-1325(2021).
[26] ZHUANG S N, CHEN J F, LIANG W Y, et al. Zero GVD slow-light originating from a strong coupling of one-way modes in double-channel magneto-optical photonic crystal waveguides[J]. Optics Express, 29, 2478-2487(2021).
[27] ZURITA-SÁNCHEZ J R, HALEVI P, CERVANTES-GONZÁLEZ J C. Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function
[28] CAO T, LIU K, LI Y, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 14, 968-985(2021).
[29] FAN ZH, ZHANG SH SH, TANG J H, et al. Structure, preparation and application of graded nanomaterials[J]. Chinese Journal of Applied Chemistry, 37, 489-501(2020).
[30] MA J, WANG ZH G. Band structure and topological phase transition of photonic time crystals[J]. Optics Express, 27, 12914-12922(2019).
[31] SHARABI Y, LUSTIG E, SEGEV M. Disordered photonic time crystals[J]. Physical Review Letters, 126, 163902(2021).
[32] CHENG Q Q, PAN Y M, WANG H Q, et al. Observation of anomalous π mode in photonic floquet engingeering[J]. Physical Review Letters, 12, 173901(2019).
[33] ZENG L W, XU J, WANG CH E, et al. Photonic time crystals[J]. Scientific Reports, 7, 17165(2017).
[34] PAN Y M, WANG B. Time-crystalline phases and period-doubling oscillations in one-dimensional Floquet topological insulators[J]. Physical Review Research, 2, 043239(2020).
[35] LIU H, WANG H N, XIE B Y, et al. Progress of two-dimensional photonic topological insulators[J]. Chinese Optics, 14, 935-954(2021).
[36] FENG L, ZHU X F, YANG S, et al. Deomonstration of a large-scale optical exceptional point structure[J]. Optics Express, 22, 1760(2014).
[37] RAZA S, BOZHEVOLNYI S I. Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically induced transparency[J]. Optics Letters, 40, 4253-4256(2015).
[38] ABOOD I, ELSHAHAT S, OUYANG ZH B. High figure of merit optical buffering in coupled-slot slab photonic crystal waveguide with ionic liquid[J]. Nanomaterials, 10, 1742(2020).
Get Citation
Copy Citation Text
Zhen HE, Li-qiang ZHUO, Zhi LI, Feng-jiang ZHUANG, Shao-jian SU, Zhi-li LIN, Wei-bin QIU. Slow light in graphene plasmonic time crystals[J]. Chinese Optics, 2022, 15(4): 845
Category: Original Article
Received: Nov. 18, 2021
Accepted: --
Published Online: Sep. 6, 2022
The Author Email: Wei-bin QIU (wbqiu@hqu.edu.cn)