Journal of Synthetic Crystals, Volume. 50, Issue 3, 536(2021)

Synthesis of Ultrafine ZnO Nanowire Arrays and Its Electrochemical Performance

ZHOU Yangyang*, ZHANG Ziying, and WENG Ying
Author Affiliations
  • [in Chinese]
  • show less
    References(24)

    [1] [1] JIN S, JIANG Y, JI H X, et al. Advanced 3D current collectors for lithium-based batteries[J]. Advanced Materials, 2018, 30(48): 1802014.

    [2] [2] CHEN T M, JIN Y, LV H, et al. Applications of lithium-ion batteries in grid-scale energy storage systems[J]. Transactions of Tianjin University, 2020, 26(3): 208-217.

    [3] [3] HENSCHEL J, HORSTHEMKE F, STENZEL Y P, et al. Lithium ion battery electrolyte degradation of field-tested electric vehicle battery cells-a comprehensive analytical study[J]. Journal of Power Sources, 2020, 447: 227370.

    [4] [4] ULVESTAD A, REKSTEN A H, ANDERSEN H F, et al. Crystallinity of silicon nanoparticles: direct influence on the electrochemical performance of lithium ion battery anodes[J]. ChemElectroChem, 2020, 7(21): 4349-4353.

    [5] [5] YU J, ZHAO L, HUANG Y F, et al. Progress and perspective of constructing solid electrolyte interphase on stable lithium metal anode[J]. Frontiers in Materials, 2020, 7: 71. DOI: 10.3389/fmats.2020.00071.

    [7] [7] WANG J S, SHEN Z G, YI M. Scalable and high-performance graphene/graphite nanosheet composite anode for lithium ion batteries via jet cavitation[J]. Energy Technology, 2020, 8(10): 2000511.

    [8] [8] FANG S, BRESSER D, PASSERINI S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(1): 1902485.

    [9] [9] REDDY R C K, LIN J, CHEN Y Y, et al. Progress of nanostructured metal oxides derived from metal-organic frameworks as anode materials for lithium-ion batteries[J]. Coordination Chemistry Reviews, 2020, 420: 213434.

    [10] [10] ZHU S, LI J J, DENG X Y, et al. Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes[J]. Advanced Functional Materials, 2017, 27(9): 1605017.

    [11] [11] ZHAO Y, LI X F, YAN B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(8): 1502175.

    [12] [12] MANICKAM S, GUNAWARDHANA N, YOSHIO M. Synthesis of ZnO hollow nanospheres and their electrochemical reactivity for lithium-ion batteries[J]. International Proceedings of Computer Science & Information Tech, 2012, 56: 64-69.

    [13] [13] SUH D I, BYEON C C, LEE C L. Synthesis and optical characterization of vertically grown ZnO nanowires in high crystallinity through vapor-liquid-solid growth mechanism[J]. Applied Surface Science, 2010, 257(5): 1454-1456.

    [14] [14] ZHANG G H, HOU S C, ZHANG H, et al. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode[J]. Advanced Materials, 2015, 27(14): 2400-2405.

    [15] [15] ZHANG Y, LU Y, FENG S, et al. On-site evolution of ultrafine ZnO nanoparticles from hollow metal-organic frameworks for advanced lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2017, 5: 22512-22518.

    [16] [16] KIM D, PARK M, KIM S M, et al. Conversion reaction of nanoporous ZnO for stable electrochemical cycling of binderless Si microparticle composite anode[J]. ACS Nano, 2018, 12: 10903-10913.

    [17] [17] WU G L, JIA Z R, CHENG Y H, et al. Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries[J]. Applied Surface Science, 2019, 464: 472-478.

    [18] [18] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.

    [19] [19] KUSHIMA A, LIU X H, ZHU G, et al. Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation[J]. Nano Letters, 2011, 11(11): 4535-4541.

    [20] [20] WANG H B, PAN Q M, CHENG Y X, et al. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries[J]. Electrochimica Acta, 2009, 54(10): 2851-2855.

    [21] [21] ZHANG Z Y, XU P P, WENG Y, et al. Nanotube network arrays with nickel oxide canopies as flexible high-energy anodes for lithium storage[J]. Journal of Alloys and Compounds, 2020, 847: 156366.

    [22] [22] SONG J, WANG X, RIEDO E, et al. Systematic study on experimental conditions for large-scale growth of aligned ZnO nanowires on nitrides[J]. The Journal of Physical Chemistry B, 2005, 109(20): 9869-9872.

    [23] [23] ZHOU Z H, ZHAN C H, WANG Y Y, et al. Rapid mass production of ZnO nanowires by a modified carbothermal reduction method[J]. Materials Letters, 2011, 65(5): 832-835.

    [24] [24] YANG X L, ZHANG P C, WEN Z Y, et al. High performance silicon/carbon composite prepared by in situ carbon-thermal reduction for lithium ion batteries[J]. Journal of Alloys and Compounds, 2010, 496(1/2): 403-406.

    [25] [25] ZHANG Z W, LI Z Q, HAO F B, et al. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability[J]. Advanced Functional Materials, 2014, 24(17): 2500-2509.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Yangyang, ZHANG Ziying, WENG Ying. Synthesis of Ultrafine ZnO Nanowire Arrays and Its Electrochemical Performance[J]. Journal of Synthetic Crystals, 2021, 50(3): 536

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 4, 2021

    Accepted: --

    Published Online: Apr. 15, 2021

    The Author Email: Yangyang ZHOU (951548520@qq.com)

    DOI:

    CSTR:32186.14.

    Topics