Chinese Optics Letters, Volume. 20, Issue 12, 122201(2022)
Laser emission from low-loss cladding waveguides in Pr:YLF by femtosecond laser helical inscription Editors' Pick
[1] D. Choudhury, J. R. Macdonald, A. K. Kar. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photon. Rev., 8, 827(2014).
[2] K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. K. Wang, Y. Cheng, K. Midorikawa. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip, 14, 3447(2014).
[3] Y. C. Jia, S. X. Wang, F. Chen. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron. Adv., 3, 190042(2020).
[4] K. Sun, D. Z. Tan, X. Y. Fang, X. T. Xia, D. J. Lin, J. Song, Y. H. Lin, Z. J. Liu, M. Gu, Y. Z. Yue, J. R. Qiu. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 375, 307(2022).
[5] A. Rodenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, D. Jaque. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations. Appl. Phys. B, 95, 85(2009).
[6] F. Chen, J. R. V. de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev., 8, 251(2014).
[7] A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, J. Mitchell. Depressed cladding, buried waveguide laser formed in a YAG : Nd3+ crystal by femtosecond laser writing. Opt. Lett., 30, 2248(2005).
[8] R. N. Li, L. F. Sun, Y. J. Cai, Y. Y. Ren, H. L. Liu, M. D. Mackenzie, A. K. Kar. Near-infrared lasing and tunable upconversion from femtosecond laser inscribed Nd,Gd:CaF2 waveguides. Chin. Opt. Lett., 19, 081301(2021).
[9] Y. Y. Ren, L. M. Zhang, H. G. Xing, C. Romero, J. R. V. de Aldana, F. Chen. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:sapphire crystal. Opt. Laser Technol., 103, 82(2018).
[10] H. L. Liu, Y. C. Jia, J. R. V. de Aldana, D. Jaque, F. Chen. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance. Opt. Express, 20, 18620(2012).
[11] S. Muller, T. Calmano, P. Metz, N. O. Hansen, C. Krankel, G. Huber. Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser. Opt. Lett., 37, 5223(2012).
[12] Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, L. Zhang. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing. Sci. Rep., 5, 18365(2015).
[13] G. Salamu, F. Jipa, M. Zamfirescu, N. Pavel. Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique. Opt. Mater. Express, 4, 790(2014).
[14] B. Fang, S. Gao, Z. Wang, S. Zhu, T. Li. Efficient second harmonic generation in silicon covered lithium niobate waveguides. Chin. Opt. Lett., 19, 060004(2021).
[15] Y. Niu, L. Yang, D. Guo, Y. Chen, X. Li, G. Zhao, X. Hu. Efficient 671 nm red light generation in annealed proton-exchanged periodically poled LiNbO3 waveguides. Chin. Opt. Lett., 18, 111902(2020).
[16] C. Pang, R. Li, Z. Li, N. Dong, J. Wang, F. Ren, F. Chen. Multi-gigahertz laser generation based on monolithic ridge waveguide and embedded copper nanoparticles. Chin. Opt. Lett., 19, 021301(2021).
[17] T. Calmano, S. Muller. Crystalline waveguide lasers in the visible and near-infrared spectral range. IEEE J. Sel. Top. Quantum Electron., 21, 401(2015).
[18] C. Grivas. Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications. Prog. Quantum Electron., 45–46, 3(2016).
[19] C. Krankel, D. T. Marzahl, F. Moglia, G. Huber, P. W. Metz. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser Photon. Rev., 10, 548(2016).
[20] Y. J. Cheng, B. Xu, B. Qu, S. Y. Luo, H. Yang, H. Y. Xu, Z. P. Cai. Comparative study on diode-pumped continuous wave laser at 607 nm using differently doped Pr3+:LiYF4 crystals and wavelength tuning to 604 nm. Appl. Opt., 53, 7898(2014).
[21] Y. S. Zhang, L. B. Zhou, T. Zhang, Y. Q. Cai, B. Xu, X. D. Xu, J. Xu. Blue diode-pumped single-longitudinal-mode Pr:YLF lasers in orange spectral region. Opt. Laser Technol., 130, 106373(2020).
[22] S. Y. Luo, X. G. Yan, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Opt. Commun., 380, 357(2016).
[23] X. Lin, Y. Zhu, S. Ji, W. Li, H. Xu, Z. Cai. Highly efficient LD-pumped 607 nm high-power CW Pr3+: YLF lasers. Opt. Laser Technol., 129, 106281(2020).
[24] W. Bolanos, G. Brasse, F. Starecki, A. Braud, J. L. Doualan, R. Moncorge, P. Camy. Green, orange, and red Pr3+:YLiF4 epitaxial waveguide lasers. Opt. Lett., 39, 4450(2014).
[25] H. L. Liu, S. Y. Luo, B. Xu, H. Y. Xu, Z. P. Cai, M. H. Hong, P. F. Wu. Femtosecond-laser micromachined Pr:YLF depressed cladding waveguide: Raman, fluorescence, and laser performance. Opt. Mater. Express, 7, 3990(2017).
[26] C. Grivas. Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques. Prog. Quantum Electron., 35, 159(2011).
[27] V. A. Amorim, J. M. Maia, D. Viveiros, P. V. S. Marques. Loss mechanisms of optical waveguides inscribed in fused silica by femtosecond laser direct writing. J. Lightwave Technol., 37, 2240(2019).
Get Citation
Copy Citation Text
Yingying Ren, Zemeng Cui, Lifei Sun, Chao Wang, Hongliang Liu, Yangjian Cai, "Laser emission from low-loss cladding waveguides in Pr:YLF by femtosecond laser helical inscription," Chin. Opt. Lett. 20, 122201 (2022)
Category: Optical Design and Fabrication
Received: Apr. 27, 2022
Accepted: Jul. 13, 2022
Posted: Jul. 15, 2022
Published Online: Aug. 31, 2022
The Author Email: Yingying Ren (ryywly@sdnu.edu.cn), Yangjian Cai (yangjiancai@sdnu.edu.cn)