Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2210002(2022)

Algorithm for Plug Seedling Classification Based on Improved Attention Mechanism Residual Network

Cong Wu, Zhiqiang Guo, and Jie Yang*
Author Affiliations
  • College of Information Engineering, Wuhan University of Technology, Wuhan 438300, Hubei , China
  • show less
    Figures & Tables(16)
    Example of corrected disk image. (a) Original disc image; (b) corrected disc image
    Segmentation result of plug image
    Loss of plug picture segmentation and normal picture erasure processing. (a) Strong seedling of white eggplant with segmentation loss; (b) strong seedling of cauliflower with segmentation loss; (c) strong seedling of cucumber with segmentation loss; (d) strong seedling of capsicum with segmentation loss; (e) strong white eggplant seedling after erasing processing; (f) strong cauliflower seedling after erasing processing; (g) strong cucumber seedling after erasing processing; (h) strong capsicum seedling after erasing processing
    Channel attention mechanism
    Spatial attention module
    Attention mechanism fusion residual module
    Inserting CBAM module between ResNet convolution blocks
    Accuracy and loss curves of different attention mechanisms in ResNet
    Feature weight heat map of classified output image
    • Table 1. Images of plug seedlings collected

      View table

      Table 1. Images of plug seedlings collected

      Plug dataBQHCLJQZQCXGHG
      Quantity /disc1029102915911
      Plug specification12×612×612×612×612×616×812×6
    • Table 2. Plant_seed dataset composition

      View table

      Table 2. Plant_seed dataset composition

      Plant_seedBQHCLJQZQCXGHG
      Strong seedling645188840020519483395503
      Weak seedling754208504696101165550
      K_X3249
      Total17219
    • Table 3. Improved ResNet parameters

      View table

      Table 3. Improved ResNet parameters

      Layer nameOutput size34-layer50-layerCBAM
      conv1112×1127×7,64,stride 2
      conv2_x56×563×3maxpool, stride 2
      3×3,64CBAM3×3,64×31×1,64CBAM3×3,64CMAB1×1,256×3
      conv3_x28×283×3,128CBAM3×3,128×41×1,128CBAM3×3,128CMAB1×1,512×4
      conv4_x14×143×3,256CBAM3×3,256×61×1,256CBAM3×3,256CMAB1×1,1024×6
      conv5_x7×73×3,512CBAM3×3,512×31×1,512CBAM3×3,512CMAB1×1,2048×3
      1×1Average pool,15-d fc,softmax
      Gflops /MB21.9726.05
    • Table 4. Comparison of CBAM module insertion methods

      View table

      Table 4. Comparison of CBAM module insertion methods

      ArchitectureParams /MBGflopsAccuracy /%
      ResNet3421.7911.7590.69±1.61
      ResNet34+SE21.9511.7592.04±1.36
      ResNet34+SE+CBAM_basic22.1111.7693.68±0.62
      ResNet34+CBAM_basic21.9611.7693.46±0.84
      ResNet34+CBAM_conv21.8111.7591.28±0.92
      ResNet34+CBAM_basic_conv21.9711.7693.80±0.80
      ResNet5025.5613.1691.58±1.82
      ResNet50+SE28.0713.1893.19±0.81
      ResNet50+CBAM_bottle25.8713.1892.32±0.98
      ResNet50+CBAM_conv25.7313.1692.23±0.97
      ResNet50+CBAM_bottle_conv26.0513.1994.89±0.61
      ResNet50+SE+CBAM_bottle28.3913.2095.42±0.92
    • Table 5. Accuracy and recall results of each model in Plant_seed

      View table

      Table 5. Accuracy and recall results of each model in Plant_seed

      ArchitectureBQWBQSHCWHCS
      PRPRPRPR
      ResNet340.6550.8640.9740.9590.9590.7460.9930.940
      ResNet34+SE0.9050.8640.9751.0000.8140.8330.9740.935
      ResNet34+CBAM_basic0.9470.8180.9750.9950.8520.9130.9800.963
      ResNet34+CBAM_conv0.8890.7270.9740.9840.8690.7380.9730.943
      ResNet34+CBAM_basic_conv0.9050.8640.9901.0000.7530.8970.9810.924
      ResNet34+SE+CBAM_basic1.0000.8640.9850.9900.9150.7700.930.979
      ArchitectureHGWHGSK_XLJWLJSQZW
      PRPRPRPRPRPR
      ResNet340.9340.9450.9930.9400.9140.9430.9150.9730.9800.8080.9330.700
      ResNet34+SE0.9870.9090.9360.9800.9240.9590.9290.9760.9900.8580.9250.879
      ResNet34+CBAM_basic0.9570.9330.9240.9670.9420.9640.9430.9730.9300.8920.9660.800
      ResNet34+CBAM_conv0.9380.9150.9360.9730.9270.9390.9060.9840.9510.8170.9630.750
      ResNet34+CBAM_basic_conv0.9520.970.9660.9530.9560.9620.9550.9880.9910.9000.8730.979
      ResNet34+SE+CBAM_basic0.930.9640.9790.9130.9530.9570.8981.0001.0000.7920.9520.850
      ArchitectureQZSQCWQCSXGWXGSAPAR
      PRPRPRPRPR
      ResNet340.9200.9950.8470.9340.9510.8940.8210.7740.9470.9300.9110.892
      ResNet34+SE0.9650.9770.8540.8960.9240.8940.9180.7360.9230.9730.9290.911
      ResNet34+CBAM_basic0.9560.9920.8960.9450.9600.9300.8950.7340.9340.9660.9370.919
      ResNet34+CBAM_conv0.9400.9950.8820.8960.9270.9370.7840.7360.9190.9440.9190.885
      ResNet34+CBAM_basic_conv0.9870.9720.8050.9730.9790.8380.9070.8080.9470.9800.9300.933
      ResNet34+SE+CBAM_basic0.9630.9850.9090.8740.9180.9400.8770.8570.9640.9610.9450.913
    • Table 6. Different network training results of Plant_seed dataset

      View table

      Table 6. Different network training results of Plant_seed dataset

      ArchitectureParam /MBGflopsAccuracy /%
      AlexNet1714.63.9688.76±0.84
      GoogleNet185.9910.1487.10±1.30
      RegNet_400mf194.300.4094.63±0.97
      EfficientNet_B0205.300.4086.57±1.13
      EfficientNetV2_S2124.008.8094.85±0.82
      ResNet3421.7911.7590.69±1.61
      ResNet34+CBAM_basic_conv21.9711.7693.80±0.80
      ResNet5025.5613.1692.96±0.64
      ResNet50+CBAM_bottle_conv26.0513.1994.89±0.61
    • Table 7. Comparison of model classification error rates

      View table

      Table 7. Comparison of model classification error rates

      ArchitectureError /%
      ResNet347.67±0.54
      ResNet506.55±0.36
      Proposed(ResNet34)5.96±0.49
      Proposed(ResNet50)5.04±0.37
      Proposed(ResNet34+erasing)4.23±0.21
      Proposed(ResNet50+erasing)4.14±0.13
    Tools

    Get Citation

    Copy Citation Text

    Cong Wu, Zhiqiang Guo, Jie Yang. Algorithm for Plug Seedling Classification Based on Improved Attention Mechanism Residual Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 23, 2021

    Accepted: Sep. 24, 2021

    Published Online: Sep. 23, 2022

    The Author Email: Jie Yang (jieyang@whut.edu.cn)

    DOI:10.3788/LOP202259.2210002

    Topics