Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0116001(2024)

Advancements in Ultrafast-Laser-Inducing Micro-Nanophotonic Structures Inside Lithium Niobate (Invited)

Bo Zhang*, Ziquan Wang, Zhuo Wang, and Jianrong Qiu**
Author Affiliations
  • College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    References(99)

    [1] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [2] Annadhasan M, Basak S, Chandrasekhar N et al. Next-generation organic photonics: the emergence of flexible crystal optical waveguides[J]. Advanced Optical Materials, 8, 2000959(2020).

    [3] Vazimali M G, Fathpour S. Applications of thin-film lithium niobate in nonlinear integrated photonics[J]. Advanced Photonics, 4, 034001(2022).

    [4] Kong Y F, Bo F, Wang W W et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 32, e1806452(2020).

    [5] Chen G Y, Li N X, Da Ng J et al. Advances in lithium niobate photonics: development status and perspectives[J]. Advanced Photonics, 4, 034003(2022).

    [6] Sun J, Hao Y X, Zhang L et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 49, 947-964(2020).

    [7] Gao B F, Ren M X, Zheng D H et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 50, 1183-1199(2021).

    [8] Wu R B, Zhang J H, Yao N et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 43, 4116-4119(2018).

    [9] Chen F, Wang L, Wang X L et al. Channel waveguide array in Ce-doped potassium sodium strontium Barium niobate crystal fabricated by He+ ion implantation[J]. Applied Physics Letters, 89, 191102(2006).

    [10] Lacour F, Courjal N, Bernal M P et al. Nanostructuring lithium niobate substrates by focused ion beam milling[J]. Optical Materials, 27, 1421-1425(2005).

    [11] Li Z H, Wang R N, Lihachev G et al. High density lithium niobate photonic integrated circuits[J]. Nature Communications, 14, 4856(2023).

    [12] Zhang B, Wang Z, Tan D Z et al. Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications[J]. PhotoniX, 4, 24(2023).

    [13] Zhang B, Liu X F, Qiu J R. Single femtosecond laser beam induced nanogratings in transparent media- mechanisms and applications[J]. Journal of Materiomics, 5, 1-14(2019).

    [14] Zhang X L, Yu F, Chen Z G et al. Non-Abelian braiding on photonic chips[J]. Nature Photonics, 16, 390-395(2022).

    [15] Xu S, Fan H, Li Z Z et al. Ultrafast laser-inscribed nanogratings in sapphire for geometric phase elements[J]. Optics Letters, 46, 536-539(2021).

    [16] Sun K, Tan D Z, Fang X Y et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 375, 307-310(2022).

    [17] Wang Z, Zhang B, Wang Z Q et al. 3D imprinting of voxel-level structural colors in lithium niobate crystal[J]. Advanced Materials, 35, 2303256(2023).

    [18] Wang X L, Cao Q, Wang R N et al. Domain growth driven by a femtosecond laser in lithium niobate crystal[J]. Optics Letters, 48, 566-569(2023).

    [19] Imbrock J, Szalek D, Laubrock S et al. Thermally assisted fabrication of nonlinear photonic structures in lithium niobate with femtosecond laser pulses[J]. Optics Express, 30, 39340-39352(2022).

    [20] Osellame R, Cerullo G, Ramponi R[M]. Femtosecond laser micromachining: photonic and microfluidic devices in transparent materials(2012).

    [21] Tan D Z, Sharafudeen K N, Yue Y Z et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications[J]. Progress in Materials Science, 76, 154-228(2016).

    [22] Tan D Z, Zhang B, Qiu J R. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications[J]. Laser & Photonics Reviews, 15, 2000455(2021).

    [23] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [24] Zhang B, Wang Z, Sun K et al. Recent research progress on ultrafast laser-induced selective crystallization in glasses[J]. Journal of the Chinese Ceramic Society, 50, 1033-1045(2022).

    [25] Garcia-Lechuga M, Siegel J, Hernandez-Rueda J et al. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of lithium niobate irradiated with femtosecond laser pulses[J]. Journal of Applied Physics, 116, 113502(2014).

    [26] Zhang B, Tan D Z, Wang Z et al. Self-organized phase-transition lithography for all-inorganic photonic textures[J]. Light: Science & Applications, 10, 93(2021).

    [27] Gui L, Xu B X, Wu D J et al. Refractive index change in lithium niobate induced by focused femtosecond laser[J]. Proceedings of SPIE, 5355, 22-32(2004).

    [28] Zhou G Y, Gu M. Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal[J]. Applied Physics Letters, 87, 241107(2005).

    [29] Chen X, Karpinski P, Shvedov V et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides[J]. Optics Letters, 41, 2410-2413(2016).

    [30] Wei D Z, Wang C W, Wang H J et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 12, 596-600(2018).

    [31] Chen F, de Aldana J R V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 8, 251-275(2014).

    [32] Lü J M, Cheng Y Z, de Aldana J R V et al. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal[J]. Journal of Lightwave Technology, 34, 3587-3591(2016).

    [33] Gui L, Xu B X, Chong T C. Microstructure in lithium niobate by use of focused femtosecond laser pulses[J]. IEEE Photonics Technology Letters, 16, 1337-1339(2004).

    [34] Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Applied Physics A, 89, 127-132(2007).

    [35] Gross S, Withford M J. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications[J]. Nanophotonics, 4, 332-352(2015).

    [36] Ams M, Dekker P, Gross S et al. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses[J]. Nanophotonics, 6, 743-763(2017).

    [37] Burghoff J, Hartung H, Nolte S et al. Structural properties of femtosecond laser-induced modifications in LiNbO3[J]. Applied Physics A, 86, 165-170(2007).

    [38] Osellame R, Lobino M, Chiodo N et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient[J]. Applied Physics Letters, 90, 241107(2007).

    [39] Heinrich M, Szameit A, Dreisow F et al. Evanescent coupling in arrays of type Ⅱ femtosecond laser-written waveguides in bulk x-cut lithium niobate[J]. Applied Physics Letters, 93, 101111(2008).

    [40] Thomas J, Heinrich M, Zeil P et al. Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform[J]. Physica Status Solidi (a), 208, 276-283(2011).

    [41] He R Y, An Q, Jia Y C et al. Femtosecond laser micromachining of lithium niobate depressed cladding waveguides[J]. Optical Materials Express, 3, 1378-1384(2013).

    [42] Nguyen H D, Ródenas A, Vázquez de Aldana J R et al. Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations[J]. Optics Express, 25, 3722-3736(2017).

    [43] Zhang B, Li L Q, Wang L et al. Second harmonic generation in femtosecond laser written lithium niobate waveguides based on birefringent phase matching[J]. Optical Materials, 107, 110075(2020).

    [44] Zhou G Y, Gu M. Void generation and three-dimensional photonic crystal fabrication in a lithium niobate crystal by use of micro-explosion[C](2006).

    [45] Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 71, 882-884(1997).

    [46] Deshpande D C, Malshe A P, Stach E A et al. Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate[J]. Journal of Applied Physics, 97, 074316(2005).

    [47] Zhou G Y, Gu M. Fabrication of 3D photonic crystals in lithium niobate by use of femtosecond laser-induced microexplosion[C](2008).

    [48] Gu M, Jia B H, Li J F et al. Fabrication of three-dimensional photonic crystals in quantum-dot-based materials[J]. Laser & Photonics Reviews, 4, 414-431(2010).

    [49] Sun W G, Ji L F, Zheng J C et al. High-aspect-ratio photonic-crystal structure of lithium niobate fabricated via femtosecond Bessel beam direct writing[J]. Chinese Journal of Lasers, 49, 1002503(2022).

    [50] Yan C Y, Sun S Z, Liu X F et al. Research progress on preparation of three-dimensional micro-nano connected structures in transparent materials by femtosecond laser material reduction method[J]. Laser & Optoelectronics Progress, 60, 2100001(2023).

    [51] Ródenas A, Gu M, Corrielli G et al. Three-dimensional femtosecond laser nanolithography of crystals[J]. Nature Photonics, 13, 105-109(2019).

    [52] Lin J T, Xu Y X, Fang Z W et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 5, 8072(2015).

    [53] Zhou G Y, Gu M. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal[J]. Optics Letters, 31, 2783-2785(2006).

    [54] Cumming B P, Jesacher A, Booth M J et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate[J]. Optics Express, 19, 9419-9425(2011).

    [55] Ródenas A, Zhou G Y, Jaque D et al. Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals[J]. Advanced Materials, 21, 3526-3530(2009).

    [56] Stach E A, Radmilovic V, Deshpande D et al. Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser[J]. Applied Physics Letters, 83, 4420-4422(2003).

    [57] Xu X Y, Wang T X, Chen P C et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 609, 496-501(2022).

    [58] Shur V Y, Akhmatkhanov A R, Baturin I S. Micro- and nano-domain engineering in lithium niobate[J]. Applied Physics Reviews, 2, 040604(2015).

    [59] Sun D H, Zhang Y W, Wang D Z et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications[J]. Light: Science & Applications, 9, 197(2020).

    [60] Hu X P, Zhang Y, Zhu S N. Nonlinear beam shaping in domain engineered ferroelectric crystals[J]. Advanced Materials, 32, e1903775(2020).

    [61] Valdivia C E, Sones C L, Mailis S et al. Ultrashort-pulse optically-assisted domain engineering in lithium niobate[J]. Ferroelectrics, 340, 75-82(2006).

    [62] Thomas J, Hilbert V, Geiss R et al. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate[J]. Laser & Photonics Reviews, 7, L17-L20(2013).

    [63] Chen X, Karpinski P, Shvedov V et al. Ferroelectric domain engineering by focused infrared femtosecond pulses[J]. Applied Physics Letters, 107, 141102(2015).

    [64] Xu T X, Switkowski K, Chen X et al. Three-dimensional nonlinear photonic crystal in ferroelectric Barium calcium titanate[J]. Nature Photonics, 12, 591-595(2018).

    [65] Imbrock J, Hanafi H, Ayoub M et al. Local domain inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography[J]. Applied Physics Letters, 113, 252901(2018).

    [66] Lü J M, Cheng Y Z, Yuan W H et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal[J]. Optical Materials Express, 5, 1274-1280(2015).

    [67] Ajates J G, Vázquez de Aldana J R, Chen F et al. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides[J]. Optical Materials Express, 8, 1890-1901(2018).

    [68] Presti D A, Guarepi V, Videla F et al. Design and implementation of an integrated optical coupler by femtosecond laser written-waveguides in LiNbO3[J]. Optics and Lasers in Engineering, 126, 105860(2020).

    [69] Lü J M, Li G, Ma Y J et al. Femtosecond laser writing of low-loss three-dimensional waveguide coupler in LiNbO3 crystal[J]. Chinese Optics Letters, 21, 112201(2023).

    [70] Lin J, Farajollahi S, Fang Z et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 4, 036001(2022).

    [71] Horn W, Kroesen S, Herrmann J et al. Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing[J]. Optics Express, 20, 26922-26928(2012).

    [72] Burghoff J, Grebing C, Nolte S et al. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate[J]. Applied Physics Letters, 89, 081108(2006).

    [73] Kroesen S, Horn W, Imbrock J et al. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing[J]. Optics Express, 22, 23339-23348(2014).

    [74] Zhang B, Li L Q, Lu Q M et al. Frequency doubling in PPLN depressed-cladding waveguides written by femtosecond laser[J]. Optical Materials, 125, 112074(2022).

    [75] Zhang Q, Li M, Xu J et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering[J]. Photonics Research, 7, 503-507(2019).

    [76] Liu S, Switkowski K, Xu C L et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals[J]. Nature Communications, 10, 3208(2019).

    [77] Zhu B, Liu H G, Chen Y P et al. High conversion efficiency second-harmonic beam shaping via amplitude-type nonlinear photonic crystals[J]. Optics Letters, 45, 220-223(2019).

    [78] Liu H G, Zhao X H, Li H et al. Dynamic computer-generated nonlinear optical holograms in a non-collinear second-harmonic generation process[J]. Optics Letters, 43, 3236-3239(2018).

    [79] Broderick N G R, Ross G W, Offerhaus H L et al. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal[J]. Physical Review Letters, 84, 4345-4348(2000).

    [80] Wei D Z, Wang C W, Xu X Y et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 10, 4193(2019).

    [81] Li M X, Ling J W, He Y et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 11, 4123(2020).

    [82] Zhu B, Liu H G, Liu Y A et al. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining[J]. Optics Letters, 45, 4132-4135(2020).

    [83] Jin H, Xu P, Luo X W et al. Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal[J]. Physical Review Letters, 111, 023603(2013).

    [84] Gu M, Zhang Q M, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 1, 16070(2016).

    [85] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).

    [86] Zhang J Y, Gecevičius M, Beresna M et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 112, 033901(2014).

    [87] Shimotsuma Y, Sakakura M, Kazansky P G et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 22, 4039-4043(2010).

    [88] Wang Z, Zhang B, Tan D Z et al. Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence[J]. Opto-Electronic Advances, 6, 220008(2023).

    [89] Chen F S, LaMacchia J T, Fraser D B. Holographic storage in lithium niobate[J]. Applied Physics Letters, 13, 223-225(1968).

    [90] Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithium niobate crystals[J]. Nature, 393, 665-668(1998).

    [91] Mok F H. Angle-multiplexed storage of 5000 holograms in lithium niobate[J]. Optics Letters, 18, 915-917(1993).

    [92] Chen F S. Optically induced change of refractive indices in LiNbO3 and LiTaO3[J]. Journal of Applied Physics, 40, 3389-3396(1969).

    [93] Zheng D H, Wang S L, Chen J K et al. Lithium niobate crystals: from holographic storage to 3D display[J]. Chinese Journal of Lasers, 50, 1813001(2023).

    [94] Kawata Y, Ueki H, Hashimoto Y et al. Three-dimensional optical memory with a photorefractive crystal[J]. Applied Optics, 34, 4105-4110(1995).

    [95] Kawata Y, Ishitobi H, Kawata S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory[J]. Optics Letters, 23, 756-758(1998).

    [96] Gao L, Liang J Y, Li C Y et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014).

    [97] Yang C S, Qi D L, Cao F Y et al. Single-shot receive-only ultrafast electro-optical deflection imaging[J]. Physical Review Applied, 13, 024001(2020).

    [98] Zhang B, Wang Z, Tan D Z et al. Ultrafast laser inducing continuous periodic crystallization in the glass activated via laser-prepared crystallite-seeds[J]. Advanced Optical Materials, 9, 2001962(2021).

    [99] Karpinski P, Shvedov V, Krolikowski W et al. Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate[J]. Optics Express, 24, 7456-7476(2016).

    Tools

    Get Citation

    Copy Citation Text

    Bo Zhang, Ziquan Wang, Zhuo Wang, Jianrong Qiu. Advancements in Ultrafast-Laser-Inducing Micro-Nanophotonic Structures Inside Lithium Niobate (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0116001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Dec. 14, 2023

    Accepted: Dec. 22, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Zhang Bo (zhangbob@zju.edu.cn), Qiu Jianrong (qjr@zju.edu.cn)

    DOI:10.3788/LOP232676

    CSTR:32186.14.LOP232676

    Topics