Infrared and Laser Engineering, Volume. 51, Issue 1, 20210797(2022)
Wireless communications based on information metasurfaces (Invited)
[1] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors, and enhanced non-linear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).
[2] Shelby R A. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).
[3] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966(2000).
[4] Cheng Q, Cui T J, Jiang W X, et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 12, 063006(2010).
[5] Liu R, Ji C, Mock J, et al. Broadband ground-plane cloak[J]. Science, 323, 366-369(2009).
[6] Landy N I, Sajuyigbe S, Mock J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).
[7] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).
[8] Jiang W X, Qiu C W, Han T C, et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 25, 6963-6968(2013).
[9] Jiang W X, Ma H F, Cheng Q, et al. Illusion media: Generating virtual objects using realizable metamaterials[J]. Applied Physics Letters, 96, 121910(2010).
[10] Lai Y, Jack N G, Chen H Y, et al. Illusion optics: the optical transformation of an object into another object[J]. Physical Review Letters, 102, 253902(2009).
[11] Jiang W X, Qiu C W, Han T C, et al. Creation of ghost illusions using wave dynamics in metamaterials[J]. Advanced Functional Materials, 23, 4028-4034(2013).
[12] Chiu C N, Chang K P. A novel miniaturized-element frequency selective surface having a stable resonance[J]. IEEE Antennas and Wireless Propagation Letters, 8, 1175-1177(2009).
[13] Sarabandi K, Behdad N. A frequency selective surface with miniaturized elements[J]. IEEE Transactions on Antennas and Propagation, 55, 1239-1245(2007).
[14] Liu S, Chen H, Cui T J. A broadband terahertz absorber using multi-layer stacked bars[J]. Applied Physics Letters, 106, 151601(2015).
[15] Xiong H, Hong J S, Luo C M, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures[J]. Journal of Applied Physics, 114, 064109(2013).
[16] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz meta-materials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).
[17] Liu L X, Zhang X Q, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 26, 5031-5036(2014).
[18] Gao X, Yang W L, Ma H F, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 66, 6086-6095(2018).
[19] Li S J, Li Y B, Zhang L, et al. Meta-microstructures: Programmable controls to scattering properties of a radiation array[J]. Laser & Photonics Review, 15, 2000449(2021).
[20] Chen M, Epstein A, Eleftheriades G V. Design and experimental verification of a passive Huygens' metasurface lens for gain enhancement of frequency-scanning slotted-waveguide antennas[J]. IEEE Transactions on Antennas and Propagation, 67, 4678-4692(2019).
[21] Iqbal S, Liu S, Luo J, et al. Controls of transmitted electromagnetic waves for diverse functionalities using polarization-selective dual-band 2 bit coding metasurface[J]. Journal of Optics, 22, 015104(2020).
[22] Li L L, Ruan H X, Liu C, et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 10, 1082(2019).
[23] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital meta-materials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).
[24] Zhu B, Chen K, Jia N, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface[J]. Scientific Reports, 4, 4971(2014).
[25] Yoon G, So S, Kim M, et al. Electrically tunable metasurface perfect absorber for infrared frequencies[J]. Nano Converg, 4, 36(2017).
[26] Park J, Kang J H, Liu X, et al. Electrically tunable Epsilon-Near-Zero (ENZ) metafilm absorbers[J]. Scientific Reports, 5, 15754(2015).
[27] Sun Y L, Zhang X G, Yu Q, et al. Infrared-controlled programmable metasurface[J]. Science Bulletin, 65, 883-888(2020).
[28] Zhang X G, Jiang W X, Jiang H L, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 3, 165-171(2020).
[29] Zhang X G, Yu Q, Jiang W, et al. Programmable metasurfaces: Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 7, 2070058(2020).
[30] Zeng X L, Gao M, Zhang L X, et al. Design of a tuneable and broadband absorber using a switchable transmissive/reflective FSS[J]. Iet Microwaves Antennas & Propagation, 12, 1211-1215(2018).
[31] Ma Q, Hong Q R, Bai G D, et al. Editing arbitrarily linear polarizations using programmable metasurface[J]. Physical Review Applied, 13, 021003(2020).
[32] Cui T J, Li L L, Liu S, et al. Information Metamaterial System s[J]. iScience, 23, 101403(2020).
[33] Zhang Z, Dai L, Chen X, et al. Active RIS vs. passive RIS: Which will prevail in 6 G?[J]. arXiv, 2103.15154v3(2021).
[34] Huang C W, Hu S, Alexandropoulos G C, et al. Holographic MIMO surfaces for 6 G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 27, 118-125(2020).
[35] Basar E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6 G[J]. IEEE Transactions Communications, 68, 3187-3196(2020).
[36] Basar E, Renzo M D, Rosny J D, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 7, 116753-116773(2019).
[37] Özdogan O, Björnson E, Larsson E G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling[J]. IEEE Wireless Communications Letters, 9, 581-585(2020).
[38] [38] Ellingson S W. Path loss in reconfigurable intelligent surfaceenabled channels[C]2021 IEEE 32nd Annual International Symposium on Personal, Indo Mobile Radio Communications (PIMRC), 2021: 829835.
[39] [39] Boulogegos A–A A, Alexiou A. Pathloss modeling of reconfigurable intelligent surface assisted THz wireless systems[C]IEEE International Conference on Communications, 2021: 16.
[40] Danufane F H, Renzo M D, Rosny J D, et al. On the path-loss of reconfigurable intelligent surfaces: An approach based on green’s theorem applied to vector fields[J]. IEEE Transactions on Communications, 69, 5573-5592(2021).
[41] Tang W, Chen M Z, Chen X Y, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 20, 421-439(2021).
[42] Tang W, Chen M Z, Chen X Y, et al. Path loss modeling and measurements for reconfigurable intelligent surfaces in the millimeter-wave frequency band[J]. arXiv, 2101.08607v2(2021).
[43] Abeywickrama S, Zhang R, Wu Q Q. Intelligent reflecting surface: Practical phase shifter model and beamforming optimization[J]. IEEE Transactions on Communications, 68, 5849-5863(2020).
[44] Chen W, Bai L, Tang W, et al. Angle-dependent phase shifter model for reconfigurable intelligent surfaces: Does the angle-reciprocity hold?[J]. IEEE Communications Letters, 24, 2060-2064(2020).
[45] Gradoni G, Renzo M D. End-to-end mutual-coupling-aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances[J]. IEEE Wireless Communications Letters, 10, 938-942(2021).
[46] Qian X, Renzo M D. Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces[J]. IEEE Wireless Communications Letters, 10, 1183-1187(2021).
[47] Abrardo A, Dardari D, Renzo M D, et al. MIMO Interference channels assisted by reconfigurable intelligent surfaces: Mutual coupling aware sum-rate optimization based on a mutual impedance channel model[J]. arXiv, 2102.07155(2021).
[48] Shen S, Clerckx B, Murch R. Modeling and architecture design of intelligent reflecting surfaces using scattering parameter network analysis[J]. arXiv, 2011.11362v2(2021).
[49] Yang X, Wen C-K, Jin S. MIMO detection for reconfigurable intelligent surface-assisted millimeter wave systems[J]. IEEE Journal on Selected Areas in Communications, 38, 1777-1792(2020).
[50] Zheng B, You C, Zhang R. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design[J]. IEEE Transactions on Wireless Communications, 20, 4513-4525(2021).
[51] ElMossallamy M A, Zhang H, Sultan R, et al. On spatial multiplexing using reconfigurable intelligent surface[J]. IEEE Wireless Communications Letters, 10, 226-230(2021).
[52] Hougne P D, Fink M, Lerosey G. Optimally diverse communication channels in disordered environments with tuned randomness[J]. Nature Electronics, 2, 36-41(2019).
[53] Chen W, Wen C K, Li X, et al. Channel customization for joint Tx-RISs-Rx design in hybrid mmWave systems[J]. arXiv, 2109.13058(2021).
[54] Zhao J, Yang X, Dai J Y, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 6, 231-238(2019).
[55] Dai J Y, Tang W K, Zhao J, et al. Wireless communications through a simplified architecture based on time‐domain digital coding metasurface[J]. Advanced Materials Technologies, 4, 1900044(2019).
[56] Tang W K, Dai J Y, Chen M Z, et al. Programmable metasurface‐based RF chain‐free 8 PSK wireless transmitter[J]. Electronics Letters, 55, 417-420(2019).
[57] Dai J Y, Tang W K, Yang L X, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 68, 1618-1627(2020).
[58] Chen M Z, Tang W K, Dai J Y, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. National Science Review, nwab134(2021).
[59] Cui T J, Liu S, Bai G D, et al. Direct transmission of digital message via programmable coding metasurface[J]. Research, 2019, 2584509(2019).
[60] Wan X, Zhang Q, Chen T Y, et al. Multichannel direct transmissions of near-field information[J]. Light: Science & Applications, 8, 1-8(2019).
[61] Zhao H, Shuang Y, Wei M L, et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[J]. Nature Communication, 11, 3926(2020).
[62] Zhang L, Chen M Z, Tang W K, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces[J]. Nature Electronics, 4, 218-227(2021).
[63] Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light: Science & Applications, 5, e16172(2016).
[64] Wu H T, Bai G D, Liu S, et al. Information theory of metasurfaces[J]. National Science Review, 7, 561-571(2020).
[65] Dai J Y, Zhao J, Cheng Q, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Light: Science & Applications, 7, 90(2018).
[66] Lu L, Li G Y, Swindlehurst A L, et al. An overview of massive MIMO: Benefits and challenges[J]. IEEE J Sel Top Signal Process, 8, 742-758(2014).
Get Citation
Copy Citation Text
Jingcheng Liang, Weicong Chen, Qiang Cheng, Shi Jin, Tiejun Cui. Wireless communications based on information metasurfaces (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210797
Category: Optical communication and sensing
Received: Oct. 29, 2021
Accepted: Jan. 6, 2022
Published Online: Mar. 8, 2022
The Author Email: