Journal of Optoelectronics · Laser, Volume. 36, Issue 3, 324(2025)

A novel retinal vascular image segmentation method based on STB and FSASC technology

LIU Hui1 and ZHU Zhengwei1,2、*
Author Affiliations
  • 1School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
  • 2Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang, Sichuan 621010, China
  • show less
    References(20)

    [1] [1] ABODULSAHIB A A,MAHMOUD M A,MOHAMMED M A,et al.Comprehensive review of retinal blood vessel segmentation and classification techniques:intelligent solutions for green computing in medical images,current challenges,open issues,and knowledge gaps in fundus medical images[J].Network Modeling Analysis in Health Informatics and Bioinformatics,2021,10:1-32.

    [2] [2] TIAN F,LI Y,WANG J,et al.Blood vessel segmentation of fundus retinal images based on improved Frangi and mathematical morphology[J].Computational and Mathematical Methods in Medicine,2021,2021(1):1-11.

    [4] [4] JEBASEELI T J,DURAI C A D,PETER J D.Retinal blood vessel segmentation from diabetic retinopathy images using tandem PCNN model and deep learning based SVM[J].Optik,2019,199:163328.

    [5] [5] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition,June 7-12,2015,Boston,MA,USA.New York:IEEE,2015:3431-3440.

    [6] [6] RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-assisted Intervention-MICCAI 2015:18th International Conference,October 5-9,2015,Munich,Germany.Cham:Springer International Publishing,2015:234-241.

    [7] [7] CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].(2017-06-17)[2023-10-08].https://arxiv.org/abs/1706.05587.

    [8] [8] XIAO X,LIAN S,LUO Z,et al.Weighted Res-UNet for high-quality retina vessel segmentation[C]//2018 9th International Conference on Information Technology in Medicine and Education,October 19-21,2018,Hangzhou,China.New York:IEEE,2018:327-331.

    [9] [9] GUAN S,KHAN A A,SIKDAR S,et al.Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal[J].IEEE Journal of Biomedical and Health Informatics,2019,24(2):568-576.

    [10] [10] GUO C,SZEMENYEI M,YI Y,et al.SA-UNet:Spatial attention U-Net for retinal vessel segmentation[C]//2020 25th International Conference on Pattern Recognition,January 10-15,2021,Milan,Italy.New York:IEEE,2021:1236-1242.

    [11] [11] KHAN S,NASEER M,HAYAT M,et al.Transformers in vision:A survey[J].ACM Computing Surveys,2022,54(10s):1-41.

    [12] [12] CHEN J N,LU Y Y,YU Q H,et al.TransUNet:Transformers make strong encoders for medical image segmentation[EB/OL].(2021-02-08)[2023-10-27].https://arxiv.org/abs/2102.04306.

    [13] [13] CHLAP P,MIN H,VANDENBERG N,et al.A review of medical image data augmentation techniques for deep learning applications[J].Journal of Medical Imaging and Radiation Oncology,2021,65(5):545-563.

    [14] [14] BUSLAEV A,IGLOVIKOV V I,KHVEDCHENYA E,et al.Albumentations:fast and flexible image augmentations[J].Information,2020,11(2):125.

    [15] [15] AKIL M,SAOULI R,KACHOURI R.Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy[J].Medical Image Analysis,2020,63:101692.

    [16] [16] DE RAAD K B,VAN GARDEREN K A,SMITS M,et al.The effect of preprocessing on convolutional neural networks for medical image segmentation[C]//2021 IEEE 18th International Symposium on Biomedical Imaging,April 13-16,2021,Nice,France.New York:IEEE,2021:655-658.

    [17] [17] KANJANASURAT I,PURAHONG B,PINTAVIROOJ C,et al.Blood vessel extraction and optic disk localization for diabetic retinopathy[C]//2020 10th International Conference on Biomedical Engineering and Technology,September 15-18,2020,Tokyo,Japan.New York:Association for Computing Machinery,2020:112-116.

    [18] [18] LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//IEEE/CVF International Conference on Computer Vision,October 11-17,2021,Montreal,Canada.New York:IEEE,2021:9992-10002.

    [19] [19] JAMIN A,HUMEAU-HEURTIER A.(Multiscale) cross-entropy methods:A review[J].Entropy,2019,22(1):45.

    [20] [20] VAN BEERS F,LINDSTRM A,OKAFOR E,et al.Deep neural networks with intersection over union loss for binary image segmentation[C]//8th International Conference on Pattern Recognition Applications and Methods,February 19-21,2019,Prague,Czech Republic.Setúbal:SciTePress,2019:438-445.

    [21] [21] HICKS S A,STRüMKE I,THAMBAWITA V,et al.On evaluation metrics for medical applications of artificial intelligence[J].Scientific Reports,2022,12(1):5979.

    Tools

    Get Citation

    Copy Citation Text

    LIU Hui, ZHU Zhengwei. A novel retinal vascular image segmentation method based on STB and FSASC technology[J]. Journal of Optoelectronics · Laser, 2025, 36(3): 324

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 8, 2023

    Accepted: Mar. 21, 2025

    Published Online: Mar. 21, 2025

    The Author Email: ZHU Zhengwei (zhuzwin@163.com)

    DOI:10.16136/j.joel.2025.03.0521

    Topics