Journal of Synthetic Crystals, Volume. 52, Issue 1, 156(2023)
Research Progress on Preparation of Two-Dimensional Transition Metal Dichalcogenides by CVD
[1] [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] [2] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[4] [4] AJAYAN P, KIM P, BANERJEE K. Two-dimensional van der Waals materials[J]. Physics Today, 2016, 69(9): 38-44.
[5] [5] LIU Y J, XU Z, GAO W W, et al. Graphene and other 2D colloids: liquid crystals and macroscopic fibers[J]. Advanced Materials, 2017, 29(14): 1606794.
[7] [7] ALI AHMAD S O, ASHFAQ A, AKBAR M U, et al. Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions[J]. Journal of Materials Chemistry C, 2021, 9(40): 14065-14092.
[8] [8] MENG C X, DAS P, SHI X Y, et al. In situ and operando characterizations of 2D materials in electrochemical energy storage devices[J]. Small Science, 2021, 1(4): 2000076.
[9] [9] BERTOLAZZI S, BONDAVALLI P, ROCHE S, et al. Nonvolatile memories based on graphene and related 2D materials[J]. Advanced Materials, 2019, 31(10): 1806663.
[10] [10] MA Q Y, ZHENG Y, LUO D, et al. Two-dimensional materials for all-solid-state lithium batteries[J]. Advanced Materials, 2021, Issue: e2108079.
[11] [11] ZHANG Y X, ZHANG L, LV T A, et al. Two-dimensional transition metal chalcogenides for alkali metal ions storage[J]. ChemSusChem, 2020, 13(6): 1114-1154.
[12] [12] PARKER M. Two-dimensional materials bring memory and circuitry closer[J]. Nature Electronics, 2021, 4(9): 630.
[13] [13] GONG Y J, YANG S B, LIU Z, et al. Graphene-network-backboned architectures for high-performance lithium storage[J]. Advanced Materials, 2013, 25(29): 3979-3984.
[14] [14] LIANG S J, CHENG B, CUI X Y, et al. Van der waals heterostructures for high-performance device applications: challenges and opportunities[J]. Advanced Materials, 2020, 32(27): e1903800.
[15] [15] SHI Z, ZHANG H, KHAN K, et al. Two-dimensional materials toward Terahertz optoelectronic device applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51: 100473.
[16] [16] XIA F N, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907.
[17] [17] AKKANEN S T M, FERNANDEZ H A, SUN Z P. Optical modification of 2D materials: methods and applications[J]. Advanced Materials, 2022, 34(19): e2110152.
[18] [18] LENA D, ZHONGCHANG W, GUOZHONG Z. Novel intelligent devices: Two-dimensional materials based memristors[J]. Frontiers of Physics, 2022(2): 83-85.
[19] [19] ZHU W J, LOW T, WANG H, et al. Nanoscale electronic devices based on transition metal dichalcogenides[J]. 2D Materials, 2019, 6(3): 032004.
[20] [20] KWON K C, BAEK J H, HONG K, et al. Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing[J]. Nano-Micro Letters, 2022, 14(1): 58.
[21] [21] YANG C, WANG G C, LIU M M, et al. Mechanism, material, design, and implementation principle of two-dimensional material photodetectors[J]. Nanomaterials, 2021, 11(10): 2688.
[22] [22] BURMISTROV I S, KACHOROVSKII V Y, KLUG M J, et al. Emergent continuous symmetry in anisotropic flexible two-dimensional materials[J]. Physical Review Letters, 2022, 128(9): 096101.
[24] [24] AN C H, NIE F M, ZHANG R J, et al. Two-dimensional material-enhanced flexible and self-healable photodetector for large-area photodetection[J]. Advanced Functional Materials, 2021, 31(22): 2100136.
[25] [25] JIANG H, ZHENG L, LIU Z, et al. Two-dimensional materials: from mechanical properties to flexible mechanical sensors [J]. InfoMat, 2020, 2(6): 1077-1094.
[26] [26] LIN L, SHI P, FU L, et al. First-principles study of two-dimensional material Cr2B2 as catalyst for electrochemical nitrogen reduction reaction[J]. Journal of Electroanalytical Chemistry, 2021, 899: 115677.
[27] [27] TANG T M, WANG Z L, GUAN J Q. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2022, 43(3): 636-678.
[28] [28] YANG S B, GONG Y J, ZHANG J S, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17): 2452-2456.
[29] [29] HERNANDEZ RUIZ K, WANG Z Q, CIPRIAN M, et al. Chemical vapor deposition mediated phase engineering for 2D transition metal dichalcogenides: strategies and applications[J]. Small Science, 2022, 2(1): 2100047.
[30] [30] VOIRY D, MOHITE A, CHHOWALLA M. Phase engineering of transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9): 2702-2712.
[31] [31] KANG J, TONGAY S, ZHOU J, et al. Band offsets and heterostructures of two-dimensional semiconductors[J]. Applied Physics Letters, 2013, 102(1): 012111.
[32] [32] LIU J B, LI P J, CHEN Y F, et al. Large-area synthesis of high-quality and uniform monolayer graphene without unexpected bilayer regions[J]. Journal of Alloys and Compounds, 2014, 615: 415-418.
[33] [33] CAI Z Y, LIU B L, ZOU X L, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J]. Chemical Reviews, 2018, 118(13): 6091-6133.
[34] [34] GONG Y J, LIN J H, WANG X L, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nature Materials, 2014, 13(12): 1135-1142.
[35] [35] GONG Y J, LEI S D, YE G L, et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures[J]. Nano Letters, 2015, 15(9): 6135-6141.
[38] [38] JEON Y, SEO J, KIM J, et al. Wafer-scale two-dimensional molybdenum diselenide phototransistor array via liquid-precursor-assisted chemical vapor deposition[J]. Advanced Optical Materials, 2022, 10(3): 2101492.
[39] [39] SIRAT M S, JOHARI M H, MOHMAD A R, et al. Uniform growth of MoS2 films using ultra-low MoO3 precursor in one-step heating chemical vapor deposition[J]. Thin Solid Films, 2022, 744: 139092.
[40] [40] ZHAO S W, ZHANG Y H, WANG S, et al. Controllable growth of bilayer WS2 by chemical vapor deposition and application for photodetectors[J]. Materials Letters, 2022, 317: 132103.
[42] [42] LIU B L, FATHI M, CHEN L, et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study[J]. ACS Nano, 2015, 9(6): 6119-6127.
[43] [43] MAWLONG L P L, BIROJU R K, GIRI P K. Low-temperature chemical vapor deposition growth of MoS2 nanodots and their Raman and photoluminescence profiles[J]. Frontiers in Nanotechnology, 2021, 3: 775732.
[44] [44] CHOI J, HA MIN‐JI, PARK J C, et al. A strategy for wafer-scale crystalline MoS2 thin films with controlled morphology using pulsed metal-organic chemical vapor deposition at low temperature[J]. Advanced Materials Interfaces, 2022, 9(4): 2101785.
[45] [45] GONG Y J, LI B, YE G L, et al. Direct growth of MoS2 single crystals on polyimide substrates[J]. 2D Materials, 2017, 4(2): 021028.
[46] [46] GAO Y, LIU Y, LIU Z. Controllable growth of two-dimensional materials on noble metal substrates[J]. iScience, 2021, 24(12): 103432.
[49] [49] TIAN Y, ZHENG M Y, CHENG Y, et al. Epitaxial growth of ZrSe2 nanosheets on sapphire via chemical vapor deposition for optoelectronic application[J]. Journal of Materials Chemistry C, 2021, 9(39): 13954-13962.
[50] [50] CHEN J Y, ZHAO X X, TAN S J R, et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass[J]. Journal of the American Chemical Society, 2017, 139(3): 1073-1076.
[51] [51] ZHOU Y B, DENG B, ZHOU Y, et al. Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid[J]. Nano Letters, 2016, 16(3): 2103-2107.
[52] [52] AUKARASEREENONT P, GOFF A, NGUYEN C K, et al. Liquid metals: an ideal platform for the synthesis of two-dimensional materials[J]. Chemical Society Reviews, 2022, 51(4): 1253-1276.
[53] [53] QIAN S Y, YANG R X, LAN F F, et al. Growth of continuous MoS2 film with large grain size by chemical vapor deposition[J]. Materials Science in Semiconductor Processing, 2019, 93: 317-323.
[54] [54] LI H, ZHANG X H, TANG Z K. Catalytic growth of large area monolayer molybdenum disulfide film by chemical vapor deposition[J]. Thin Solid Films, 2019, 669: 371-376.
[56] [56] JIANG S L, ZHANG C, ZHAO E D, et al. Synthesis of ultrathin PdSe2 flakes for hydrogen evolution reaction[J]. Applied Surface Science, 2021, 570: 151178.
[58] [58] XIE C Y, YANG P F, HUAN Y H, et al. Roles of salts in the chemical vapor deposition synthesis of two-dimensional transition metal chalcogenides[J]. Dalton Transactions, 2020, 49(30): 10319-10327.
[59] [59] BAE J, YOO Y. A novel carbon-assisted chemical vapor deposition growth of large-area uniform monolayer MoS2 and WS2[J]. Nanomaterials, 2021, 11(9): 2423.
[60] [60] CHANG Y P, LI W B, YANG Y C, et al. Oxidation and degradation of WS2 monolayers grown by NaCl-assisted chemical vapor deposition: mechanism and prevention[J]. Nanoscale, 2021, 13(39): 16629-16640.
[61] [61] LI S S. Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides[J]. Science, 2021, 24(11): 103229.
[63] [63] KANG K, XIE S E, HUANG L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature, 2015, 520(7549): 656-660.
[64] [64] KALANYAN B, KIMES W A, BEAMS R, et al. Rapid wafer-scale growth of polycrystalline 2H-MoS2 by pulsed metalorganic chemical vapor deposition[J]. Chemistry of Materials: a Publication of the American Chemical Society, 2017, 29(15): 6279-6288.
[65] [65] CHOI S H, STEPHEN B, PARK J H, et al. Water-assisted synthesis of molybdenum disulfide film with single organic liquid precursor[J]. Scientific Reports, 2017, 7: 1983.
[66] [66] KIM D, JO Y, JUNG D H, et al. Electrical and optical characteristics of two-dimensional MoS2 film grown by metal-organic chemical vapor deposition[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6): 3563-3567.
[67] [67] COHEN A, PATSHA A, MOHAPATRA P K, et al. Growth-etch metal-organic chemical vapor deposition approach of WS2 atomic layers[J]. ACS Nano, 2021, 15(1): 526-538.
[68] [68] LIU N, KIM J, OH J, et al. Growth of multiorientated polycrystalline MoS2 using plasma-enhanced chemical vapor deposition for efficient hydrogen evolution reactions[J]. Nanomaterials, 2020, 10(8): 1465.
[69] [69] LU A Y, ZHU H Y, XIAO J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744-749.
Get Citation
Copy Citation Text
WANG Dong, WEI Zijian, ZHANG Qian, XIA Yueqing, ZHANG Xiuli, WANG Tianhan, YUAN Zhihua, LAN Mingming. Research Progress on Preparation of Two-Dimensional Transition Metal Dichalcogenides by CVD[J]. Journal of Synthetic Crystals, 2023, 52(1): 156
Category:
Received: Aug. 8, 2022
Accepted: --
Published Online: Mar. 18, 2023
The Author Email:
CSTR:32186.14.