Acta Laser Biology Sinica, Volume. 33, Issue 4, 297(2024)

Advances in Drosophila Models of Common Human Diseases and Aging

ZHU Kai and CHEN Dongsheng*
Author Affiliations
  • College of Life Science, Anhui Normal University, Wuhu 241000, China
  • show less
    References(69)

    [2] [2] HE J, LI X, YANG S, et al. Gastrodin extends the lifespan and protects against neurodegeneration in the Drosophila PINK1 model of Parkinson’s disease[J]. Food & Function, 2021, 12(17): 7816-7824.

    [5] [5] WONGCHUM N, DECHAKHAMPHU A. Xanthohumol prolongs lifespan and decreases stress-induced mortality in Drosophila melanogaster[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021, 244: 108994.

    [6] [6] TUO W, WANG S, SHI Y, et al. Angelica sinensis polysaccharide extends lifespan and ameliorates aging-related diseases via insulin and TOR signaling pathways, and antioxidant ability in Drosophila[J]. International Journal of Biological Macromolecules, 2023, 241: 124639.

    [8] [8] ZHANG X, JIN Q, JIN L H. High sugar diet disrupts gut homeostasis though JNK and STAT pathways in Drosophila[J]. Biochemical and Biophysical Research Communications, 2017, 487(4): 910-916.

    [10] [10] WANG M, MAO H, CHEN J, et al. Ameliorative effect of bayberry leaves proanthocyanidins on high sugar diet induced Drosophila melanogaster[J]. Frontiers in Pharmacology, 2022, 13: 1008580.

    [11] [11] LI Y M, CHAN H Y E, YAO X Q, et al. Green tea catechins and broccoli reduce fat-induced mortality in Drosophila melanogaster[J]. The Journal of Nutritional Biochemistry, 2008, 19(6): 376-383.

    [14] [14] DAN A, CHEN Y, TIAN Y, et al. In vivo anti-aging properties on fat diet-induced high fat Drosophila melanogaster of n-butanol extract from Paecilomyces hepiali (PHE)[J]. Food Science and Human Wellness, 2023, 12(4): 1204-1211.

    [15] [15] CHEN S, YANG Q, CHEN X, et al. Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster[J]. Food & Function, 2020, 11(1): 524-533.

    [19] [19] MCGUCKIN M A, ERI R, SIMMS L A, et al. Intestinal barrier dysfunction in inflammatory bowel diseases[J]. Inflammatory Bowel Diseases, 2009, 15(1): 100-113.

    [21] [21] JEON Y D, LEE J H, LEE Y M, et al. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model[J]. Biomedicine & Pharmacotherapy, 2020, 124: 109847.

    [24] [24] ZHANG G, GU Y, DAI X. Protective effect of bilberry anthocyanin extracts on dextran sulfate sodium-induced intestinal damage in Drosophila melanogaster[J]. Nutrients, 2022, 14(14): 2875.

    [26] [26] YANG K, LI Q, ZHANG G, et al. The protective effects of carrageenan oligosaccharides on intestinal oxidative stress damage of female Drosophila melanogaster[J]. Antioxidants, 2021, 10(12): 1996.

    [27] [27] MA C, WANG Y, ZHANG G, et al. Agar oligosaccharides ameliorate the intestinal inflammation of male Drosophila melanogaster via modulating the microbiota, and immune and cell autophagy[J]. Food Science & Nutrition, 2021, 9(2): 1202-1212.

    [28] [28] DOW J A, ROMERO M F. Drosophila provides rapid modeling of renal development, function, and disease[J]. American Journal of Physiology-Renal Physiology, 2010, 299(6): F1237-F1244.

    [29] [29] MILLER J, CHI T, KAPAHI P, et al. Drosophila melanogaster as an emerging translational model of human nephrolithiasis[J]. The Journal of Urology, 2013, 190(5): 1648-1656.

    [30] [30] ZHANG F, CHEN X. The Drosophila nephrocyte has a glomerular filtration system[J]. Nature Reviews Nephrology, 2014, 10(9): 491.

    [31] [31] CHEN Y H, LIU H P, CHEN H Y, et al. Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis[J]. Kidney International, 2011, 80(4): 369-377.

    [32] [32] FAN Q X, GONG S Q, HONG X Z, et al. Clinical-grade Garcinia cambogia extract dissolves calcium oxalate crystals in Drosophila kidney stone models[J]. European Review for Medical & Pharmacological Sciences, 2020, 24(11): 6434-6445.

    [33] [33] NIKOLAC PERKOVIC M, PIVAC N. Genetic markers of Alzheimer’s disease[C]//Frontiers in Psychiatry: Artificial Intelligence, Precision Medicine, and Other Paradigm Shifts. Singapore: Springer, 2019: 27-52.

    [34] [34] KIM M S, KIM Y, CHOI H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model[J]. Gut, 2020, 69(2): 283-294.

    [36] [36] MIYAZAKI H, OKAMOTO Y, MOTOI A, et al. Adzuki bean (Vigna angularis) extract reduces amyloid- aggregation and delays cognitive impairment in Drosophila models of Alzheimer’s disease[J]. Nutrition Research and Practice, 2019, 13(1): 64.

    [38] [38] BLOEM B R, OKUN M S, KLEIN C. Parkinson’s disease[J]. The Lancet, 2021, 397(10291): 2284-2303.

    [40] [40] ABYAD A, SAMI HAMMAMI A. An update on pathophysiology, epidemiology, diagnosis and management part 7: medical treatment of early and advanced Parkinson’s disease: use of dopamine agonist[J]. Middle East Journal of Age and Ageing, 2022, 16(1): 3-6.

    [41] [41] SIDDIQUE Y H, NAZ F, MANTASHA I, et al. Lemongrass extract alleviates oxidative stress and delayed the loss of climbing ability in transgenic Drosophila model of Parkinson’s disease[J]. Letters in Drug Design & Discovery, 2021, 18(10): 987-997.

    [43] [43] XUE J, WANG H L, XIAO G. Transferrin1 modulates rotenone-induced Parkinson’s disease through affecting iron homeostasis in Drosophila melanogaster[J]. Biochemical and Biophysical Research Communications, 2020, 531(3): 305-311.

    [44] [44] ARAUJO S M, DE PAULA M T, POETINI M R, et al. Effectiveness of -oryzanol in reducing neuromotor deficits, dopamine depletion and oxidative stress in a Drosophila melanogaster model of Parkinson’s disease induced by rotenone[J]. Neurotoxicology, 2015, 51: 96-105.

    [45] [45] BATES G P, DORSEY R, GUSELLA J F, et al. Huntington disease[J]. Nature Reviews Disease Primers, 2015, 1(1): 1-21.

    [46] [46] BERTAPELLE C, CARILLO M R, CACCIOLA N A, et al. The reversible carnitine palmitoyl-transferase 1 inhibitor (teglicar) ameliorates the neurodegenerative phenotype in a Drosophila huntington’s disease model by acting on the expression of carnitine-related genes[J]. Molecules, 2022, 27(10): 3125.

    [47] [47] PRUCCOLI L, BREDA C, TETI G, et al. Esculetin provides neuroprotection against mutant huntingtin-induced toxicity in Huntington’s disease models[J]. Pharmaceuticals, 2021, 14(10): 1044.

    [48] [48] ARABIT J G, ELHAJ R, SCHRINER S E, et al. Rhodiola rosea improves lifespan, locomotion, and neurodegeneration in a Drosophila melanogaster model of Huntington’s disease[J]. BioMed Research International, 2018, 2018: 6726874.

    [49] [49] ADITI K, SINGH A, SHAKARAD M N, et al. Management of altered metabolic activity in Drosophila model of Huntington’s disease by curcumin[J]. Experimental Biology and Medicine, 2022, 247(2): 152-164.

    [51] [51] OYRER J, MALJEVIC S, SCHEFFER I E, et al. Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies[J]. Pharmacological Reviews, 2018, 70(1): 142-173.

    [53] [53] FISCHER F P, KARGE R A, WEBER Y G, et al. Drosophila melanogaster as a versatile model organism to study genetic epilepsies: an overview[J]. Frontiers in Molecular Neuroscience, 2023, 16: 1116000.

    [54] [54] SONG J, HU J, TANOUYE M. Seizure suppression by top1 mutations in Drosophila[J]. Journal of Neuroscience, 2007, 27(11): 2927-2937.

    [55] [55] KOTAGAL P, YARDI N. The relationship between sleep and epilepsy[J]. Seminars in Pediatric Neurology, 2008, 15(2): 42-49.

    [56] [56] LEE J, IYENGAR A, WU C F. Distinctions among electroconvulsion-and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: quantitative spike pattern analysis in Drosophila flight muscles[J]. Journal of Neurogenetics, 2019, 33(2): 125-142.

    [57] [57] SSEMPIJJA F, DARE S S, BUKENYA E E, et al. Attenuation of seizures, cognitive deficits, and brain histopathology by phytochemicals of Imperata cylindrica (L.) P. Beauv (Poaceae) in acute and chronic mutant Drosophila melanogaster epilepsy models[J]. Journal of Evidence-Based Integrative Medicine, 2023, 28: 1-26.

    [58] [58] DARE S S, MERLO E, RODRIGUEZ CURT J, et al. Drosophila parabss flies as a screening model for traditional medicine: anticonvulsant effects of Annona senegalensis[J]. Frontiers in Neurology, 2021, 11: 606919.

    [59] [59] JACOBS J A, SEHGAL A. Anandamide metabolites protect against seizures through the TRP channel water witch in Drosophila melanogaster[J]. Cell Reports, 2020, 31(9): 107710.

    [60] [60] HERRMAN H, PATEL V, KIELING C, et al. Time for united action on depression: a Lancet-World Psychiatric Association Commission[J]. The Lancet, 2022, 399(10328): 957-1022.

    [61] [61] BEUREL E, TOUPS M, NEMEROFF C B. The bidirectional relationship of depression and inflammation: double trouble[J]. Neuron, 2020, 107(2): 234-256.

    [62] [62] KRISHNAN V, NESTLER E J. The molecular neurobiology of depression[J]. Nature, 2008, 455(7215): 894-902.

    [64] [64] ARAUJO S M, POETINI M R, BORTOLOTTO V C, et al. Chronic unpredictable mild stress-induced depressive-like behavior and dysregulation of brain levels of biogenic amines in Drosophila melanogaster[J]. Behavioural Brain Research, 2018, 351: 104-113.

    [65] [65] AZEVEDO J A, CARTER B S, MENG F, et al. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression[J]. Journal of Psychiatric Research, 2016, 82: 58-67.

    [66] [66] MENDES-SILVA A P, FUJIMURA P T, DA COSTA SILVA J R,et al. Brain-enriched MicroRNA-184 is downregulated in older adults with major depressive disorder: a translational study[J]. Journal of Psychiatric Research, 2019, 111: 110-120.

    [67] [67] AHN Y, HAN S H, KIM M G, et al. Anti-depressant effects of ethanol extract from Cannabis sativa (hemp) seed in chlorpromazine-induced Drosophila melanogaster depression model[J]. Pharmaceutical Biology, 2021, 59(1): 996-1005.

    [68] [68] ARAUJO S M, BORTOLOTTO V C, POETINI M R, et al.-oryzanol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in Drosophila melanogaster[J]. Stress, 2021, 24(3): 282-293.

    [69] [69] AGGARWAL P, THAPLIYAL D, SARKAR S. The past and present of Drosophila models of traumatic brain injury[J]. Journal of Neuroscience Methods, 2022, 371: 109533.

    [70] [70] SANUKI R. Drosophila models of traumatic brain injury[J]. Frontiers in Bioscience-Landmark, 2020, 25(1): 168-178.

    [71] [71] JOHNSON V E, STEWART W, SMITH D H. Traumatic brain injury and amyloid- pathology: a link to Alzheimer’s disease?[J]. Nature Reviews Neuroscience, 2010, 11(5): 361-370.

    [72] [72] KATZENBERGER R J, LOEWEN C A, WASSARMAN D R, et al. A Drosophila model of closed head traumatic brain injury[J]. Proceedings of the National Academy of Sciences, 2013, 110(44): E4152-E4159.

    [73] [73] PETERSON A B, SARMIENTO K, XU L, et al. Traumatic brain injury-related hospitalizations and deaths among American Indians and Alaska natives: United States, 2008—2014[J]. Journal of Safety Research, 2019, 71: 315-318.

    [74] [74] BAREKAT A, GONZALEZ A, MAUNTZ R E, et al. Using Drosophila as an integrated model to study mild repetitive traumatic brain injury[J]. Scientific Reports, 2016, 6(1): 25252.

    [75] [75] SWANSON L C, RIMKUS S A, GANETZKY B, et al. Loss of the antimicrobial peptide metchnikowin protects against traumatic brain injury outcomes in Drosophila melanogaster[J]. G3: Genes, Genomes, Genetics, 2020, 10(9): 3109-3119.

    [76] [76] KUMAR S, SINGH G. Pharmacological potential of zonisamide and Nigella sativa per se and combination in high‐impact trauma device‐induced traumatic brain injury in Drosophila melanogaster[J]. Fundamental & Clinical Pharmacology, 2023, 37(3): 577-588.

    [77] [77] ZEPP R G, FAUST B C, HOIGNE J. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction[J]. Environmental Science & Technology, 1992, 26(2): 313-319.

    [78] [78] WANG L, LI Y M, LEI L, et al. Cranberry anthocyanin extract prolongs lifespan of fruit flies[J]. Experimental Gerontology, 2015, 69: 189-195.

    [79] [79] HAN Y, GUO Y, CUI S W, et al. Purple sweet potato extract extends lifespan by activating autophagy pathway in male Drosophila melanogaster[J]. Experimental Gerontology, 2021, 144: 111190.

    [80] [80] CAI X, CHEN S, LIANG J, et al. Protective effects of crimson snapper scales peptides against oxidative stress on Drosophila melanogaster and the action mechanism[J]. Food and Chemical Toxicology, 2021, 148: 111965.

    [81] [81] LIU X, YANG H, LIU Z. Signaling pathways involved in paraquat-induced pulmonary toxicity: molecular mechanisms and potential therapeutic drugs[J]. International Immunopharmacology, 2022, 113: 109301.

    [82] [82] SWINDELLS K, RHODES L. Influence of oral antioxidants on ultraviolet radiation‐induced skin damage in humans[J]. Photodermatology, Photoimmunology & Photomedicine, 2004, 20(6): 297-304.

    [83] [83] SNELLMAN E, STROZYK M, SEGERBCK D, et al. Effect of the spectral range of a UV lamp on the production of cyclobutane pyrimidine dimers in human skin in situ[J]. Photodermatology, Photoimmunology & Photomedicine, 2003, 19(6): 281-286.

    [85] [85] ZHANG G, DAI X. Antiaging effect of anthocyanin extracts from bilberry on natural or UV-treated male Drosophila melanogaster[J]. Current Research in Food Science, 2022, 5: 1640-1648.

    [88] [88] ALI T, BADSHAH H, KIM T H, et al. Melatonin attenuates D‐galactose‐induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF‐B/JNK signaling pathway in aging mouse model[J]. Journal of Pineal Research, 2015, 58(1): 71-85.

    [89] [89] CUI X, WANG L, ZUO P, et al. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress[J]. Biogerontology, 2004, 5: 317-325.

    [90] [90] BO-HTAY C, SHWE T, CHATTIPAKORN S C, et al. The role of D-galactose in the aging heart and brain[C]//Molecular Nutrition Carbohydrates. England: Elsevier, 2019: 285-301.

    [91] [91] WU D M, LU J, ZHENG Y L, et al. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins[J]. Neuro-biology of Learning and Memory, 2008, 90(1): 19-27.

    [92] [92] LI H, ZHENG L, CHEN C, et al. Brain senescence caused by elevated levels of reactive metabolite methylglyoxal on D-galactose-induced aging mice[J]. Frontiers in Neuroscience, 2019, 13: 1004.

    [94] [94] ADAMS M D, CELNIKER S E, HOLT R A, et al. The genome sequence of Drosophila melanogaster[J]. Science, 2000, 287(5461): 2185-2195.

    Tools

    Get Citation

    Copy Citation Text

    ZHU Kai, CHEN Dongsheng. Advances in Drosophila Models of Common Human Diseases and Aging[J]. Acta Laser Biology Sinica, 2024, 33(4): 297

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 19, 2024

    Accepted: Dec. 20, 2024

    Published Online: Dec. 20, 2024

    The Author Email: Dongsheng CHEN (cds2001@ahnu.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2024.04.002

    Topics