Journal of Synthetic Crystals, Volume. 51, Issue 1, 56(2022)
First-Principle Study on Photoelectric Properties of Mg, N Doped β-Ga2O3
[5] [5] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001.
[6] [6] GRUNDMANN M, STEFAN M, WENCKSTERN H V, et al. Modeling of Schottky barrier diode characteristics on heteroepitaxial β-gallium oxide thin films[C]//SPIE OPTO. Proc SPIE 10533, Oxide-Based Materials and Devices Ⅸ, San Francisco, California, USA, 2018, 1053: 105330C.
[7] [7] SASAKI K, KURAMATA A, MASUI T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy[J]. Applied Physics Express, 2012, 5(3): 035502.
[8] [8] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrates[J]. IEEE Electron Device Letters, 2013, 34(4): 493-495.
[9] [9] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504.
[10] [10] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. MBE grown Ga2O3 and its power device applications[J]. Journal of Crystal Growth, 2013, 378: 591-595.
[11] [11] GUO D Y, SHI H Z, QIAN Y P, et al. Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection[J]. Semiconductor Science and Technology, 2017, 32(3): 03LT01.
[12] [12] MAHMOUD W E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film[J]. Solar Energy Materials and Solar Cells, 2016, 152: 65-72.
[13] [13] ZHOU H, MAIZE K, QIU G, et al. Β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect[J]. Applied Physics Letters, 2017, 111(9): 092102.
[14] [14] SHIMAMURA K, VLLORA E G, UJIIE T, et al. Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals[J]. Applied Physics Letters, 2008, 92(20): 201914.
[15] [15] WONG M H, SASAKI K, KURAMATA A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212-215.
[16] [16] VARLEY J B, WEBER J R, JANOTTI A, et al. Oxygen vacancies and donor impurities in β-Ga2O3[J]. Applied Physics Letters, 2010, 97(14): 142106.
[17] [17] ZHANG Y J, YAN J L, ZHAO G, et al. First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3[J]. Physica B: Condensed Matter, 2010, 405(18): 3899-3903.
[18] [18] LANY S. Defect phase diagram for doping of Ga2O3[J]. APL Materials, 2018, 6(4): 046103.
[19] [19] ALEMA F, HERTOG B, LEDYAEV O, et al. Solar blind photodetector based on epitaxial zinc doped Ga2O3 thin film[J]. Physica Status Solidi (a), 2017, 214(5): 1600688.
[20] [20] FENG Q J, LIU J Y, YANG Y Q, et al. Catalytic growth and characterization of single crystalline Zn doped p-type β-Ga2O3 nanowires[J]. Journal of Alloys and Compounds, 2016, 687: 964-968.
[22] [22] TANG C, SUN J, LIN N, et al. Electronic structure and optical property of metal-doped Ga2O3: a first principles study[J]. RSC Advances, 2016, 6(82): 78322-78334.
[23] [23] KYRTSOS A, MATSUBARA M, BELLOTTI E. On the feasibility of p-type Ga2O3[J]. Applied Physics Letters, 2018, 112(3): 032108.
[24] [24] QIAN Y P, GUO D Y, CHU X L, et al. Mg-doped p-type β-Ga2O3 thin film for solar-blind ultraviolet photodetector[J]. Materials Letters, 2017, 209: 558-561.
[25] [25] LIU L L, LI M K, YU D Q, et al. Fabrication and characteristics of N-doped β-Ga2O3 nanowires[J]. Applied Physics A, 2010, 98(4): 831-835.
[26] [26] ZHANG L Y, YAN J L, ZHANG Y J, et al. First-principles study on electronic structure and optical properties of N-doped p-type β-Ga2O3[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(1): 19-24.
[27] [27] SUN D, GAO Y L, XUE J, et al. Defect stability and electronic structure of doped β-Ga2O3: a comprehensive ab initio study[J]. Journal of Alloys and Compounds, 2019, 794: 374-384.
[28] [28] YUAN J H, GAO B, WANG W, et al. First-principles calculations of the electronic structure and optical properties of Y-Cu co-doped ZnO[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1302-1308.
[29] [29] ZHANG L Y, YAN J L, ZHANG Y J, et al. A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N-Zn co-doped β-Ga2O3[J]. Physica B: Condensed Matter, 2012, 407(8): 1227-1231.
[30] [30] SU Y L, GUO D Y, YE J H, et al. Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity[J]. Journal of Alloys and Compounds, 2019, 782: 299-303.
[31] [31] GELLER S. Crystal structure of β-Ga2O3[J]. The Journal of Chemical Physics, 1960, 33(3): 676-684.
[32] [32] HMAN J, SVENSSON G, ALBERTSSON J. A reinvestigation of β-gallium oxide[J]. Acta Crystallographica Section C, 1996, 52(6): 1336-1338.
[33] [33] YOSHIOKA S, HAYASHI H, KUWABARA A, et al. Structures and energetics of Ga2O3 polymorphs[J]. Journal of Physics: Condensed Matter, 2007, 19(34): 346211.
[34] [34] MEDVEDEVA J E, TEASLEY E N, HOFFMAN M D. Electronic band structure and carrier effective mass in calcium aluminates[J]. Physical Review B, 2007, 76(15): 155107.
[36] [36] GUPTA S, MAGYARI-KPE B, NISHI Y, et al. Achieving direct band gap in germanium through integration of Sn alloying and external strain[J]. Journal of Applied Physics, 2013, 113(7): 073707.
[37] [37] FENG J, XIAO B, CHEN J C, et al. Optical properties of new photovoltaic materials: AgCuO2 and Ag2Cu2O3[J]. Solid State Communications, 2009, 149(37/38): 1569-1573.
Get Citation
Copy Citation Text
REN Shanshan, FU Xiaoqian, ZHAO He, WANG Honggang. First-Principle Study on Photoelectric Properties of Mg, N Doped β-Ga2O3[J]. Journal of Synthetic Crystals, 2022, 51(1): 56
Category:
Received: May. 22, 2021
Accepted: --
Published Online: Mar. 2, 2022
The Author Email: Shanshan REN (2015441680@qq.com)
CSTR:32186.14.