Acta Optica Sinica, Volume. 43, Issue 14, 1419001(2023)

Nonlinear Mode Conversion of Special Beams Based on Local Quasi-Phase-Matching

Huan Chen1,2, Gan Wu1,2, Xuhui Sun1,2, Yibing Ma1,2, Yongchuang Chen1,2, Chenglong Wang1,2, Tong Wang1,2, Yizheng Yao1,2, Bing Gao1,2, Hao Wu1,3, Ronger Lu4, Chao Zhang1,2、**, and Yiqiang Qin1,2、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
  • 2College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Jiangsu, China
  • 3School of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
  • 4Department of Physics, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • show less
    References(46)

    [1] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [2] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 3, 305-310(2007).

    [3] Xu W H, Shou Y C, Luo H L. Spin-orbit interaction of light[J]. Chinese Journal of Quantum Electronics, 39, 159-181(2022).

    [4] Andersen M, Ryu C, Cladé P et al. Quantized rotation of atoms from photons with orbital angular momentum[J]. Physical Review Letters, 97, 170406(2006).

    [5] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 1-29(2019).

    [6] Ke X Z, Xie Y C, Zhang Y. Orbital angular momentum measurement of vortex beam and its performance improvement[J]. Acta Optica Sinica, 39, 0126017(2019).

    [7] Huang X M, Wang F, Lu B L et al. Modulation for giant kerr nonlinear effect via orbital angular momentum exchange[J]. Acta Optica Sinica, 42, 2219002(2022).

    [8] Chang N, Jin L W, Gao W. Frequency doubling and propagation characteristics of orbital angular momentum beams based on spiral phase modulation[J]. Acta Optica Sinica, 39, 0319001(2019).

    [9] Ruffato G, Massari M, Romanato F. Generation of high-order Laguerre–Gaussian modes by means of spiral phase plates[J]. Optics Letters, 39, 5094-5097(2014).

    [10] Chen P, Ge S J, Ma L L et al. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals[J]. Physical Review Applied, 5, 044009(2016).

    [11] Zhao Y G, Wang Z P, Yu H H et al. Direct generation of optical vortex pulses[J]. Applied Physics Letters, 101, 031113(2012).

    [12] Yu H H, Xu M M, Zhao Y G et al. Dual-wavelength laser with topological charge[J]. AIP Advances, 3, 092129(2013).

    [13] Yan Q Y, Miao Y, Song Q Y et al. Characteristic analysis and research progress of vortex beam produced by optical microcavity[J]. Laser & Optoelectronics Progress, 59, 0100002(2022).

    [14] Ohtake Y, Ando T, Fukuchi N et al. Universal generation of higher-order multiringed Laguerre-Gaussian beams by using a spatial light modulator[J]. Optics Letters, 32, 1411-1413(2007).

    [15] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).

    [16] Lafong A, Hossack W J, Arlt J et al. Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications[J]. Optics Express, 14, 3065-3072(2006).

    [17] Rego L, Dorney K M, Brooks N J et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum[J]. Science, 364, eaaw9486(2019).

    [18] Dorney K M, Rego L, Brooks N J et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation[J]. Nature Photonics, 13, 123-130(2019).

    [19] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).

    [20] McGloin D, Simpson N B, Padgett M J. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam[J]. Applied Optics, 37, 469-472(1998).

    [21] Heckenberg N R, McDuff R, Smith C P et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 17, 221-223(1992).

    [22] Arlt J, Dholakia K, Allen L et al. The production of multiringed Laguerre–Gaussian modes by computer-generated holograms[J]. Journal of Modern Optics, 45, 1231-1237(1998).

    [23] Beijersbergen M W, Allen L, van der Veen H E L O et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).

    [24] Yuan S Z, Tian J L, Yang G. Hermitian-Gaussian and Laguerre-Gaussian and the conversion between them[J]. Guangxi Physics, 32, 19-24(2011).

    [25] Fang X Y, Kuang Z Y, Chen P et al. Examining second-harmonic generation of high-order Laguerre–Gaussian modes through a single cylindrical lens[J]. Optics Letters, 42, 4387-4390(2017).

    [26] Pan J, Shen Y J, Wan Z S et al. Index-tunable structured-light beams from a laser with an intracavity astigmatic mode converter[J]. Physical Review Applied, 14, 044048(2020).

    [27] Dholakia K, Simpson N B, Padgett M J et al. Second-harmonic generation and the orbital angular momentum of light[J]. Physical Review A, 54, R3742-R3745(1996).

    [28] Fang X Y, Wei D Z, Liu D M et al. Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal[J]. Applied Physics Letters, 107, 161102(2015).

    [29] Wang Y M, Wei D Z, Zhu Y Z et al. Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation[J]. Applied Physics Letters, 109, 081105(2016).

    [30] Li Y, Zhou Z Y, Ding D S et al. Sum frequency generation with two orbital angular momentum carrying laser beams[J]. Journal of the Optical Society of America B, 32, 407-411(2015).

    [31] Wei D, Guo J L, Fang X Y et al. Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal[J]. Optics Express, 25, 11556-11563(2017).

    [32] Fang X Y, Yang G, Wei D Z et al. Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal[J]. Optics Letters, 41, 1169-1172(2016).

    [33] Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A et al. Nonlinear generation and manipulation of Airy beams[J]. Nature Photonics, 3, 395-398(2009).

    [34] Shapira A, Juwiler I, Arie A. Nonlinear computer-generated holograms[J]. Optics Letters, 36, 3015-3017(2011).

    [35] Shapira A, Shiloh R, Juwiler I et al. Two-dimensional nonlinear beam shaping[J]. Optics Letters, 37, 2136-2138(2012).

    [36] Hong X H, Yang B, Zhang C et al. Nonlinear volume holography for wave-front engineering[J]. Physical Review Letters, 113, 163902(2014).

    [37] Kurz J R, Schober A M, Hum D S et al. Nonlinear physical optics with transversely patterned quasi-phase-matching gratings[J]. IEEE Journal of Selected Topics in Quantum Electronics, 8, 660-664(2002).

    [38] Imeshev G, Proctor M, Fejer M M. Lateral patterning of nonlinear frequency conversion with transversely varying quasi-phase-matching gratings[J]. Optics Letters, 23, 673-675(1998).

    [39] Qin Y Q, Zhang C, Zhu Y Y et al. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures[J]. Physical Review Letters, 100, 063902(2008).

    [40] Yang B, Hong X H, Yue Y Y et al. Nonlinear optical Fourier transform in an optical superlattice with “x+2” structure[J]. Optics Express, 23, 18310-18315(2015).

    [41] Kogelnik H, Li T. Laser beams and resonators[J]. Applied Optics, 5, 1550-1567(1966).

    [42] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 8, 200-227(2016).

    [43] Abramochkin E, Volostnikov V. Beam transformations and nontransformed beams[J]. Optics Communications, 83, 123-135(1991).

    [44] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).

    [45] Zhou M S, Ma J C, Zhang C et al. Numerical simulation of nonlinear field distributions in two-dimensional optical superlattices[J]. Optics Express, 20, 1261-1267(2012).

    [46] Zhao R Z, Xu Y G, Lu R E et al. Second-harmonic generation of single-mode Laguerre-Gaussian beams with an improved quasi-phase-matching method[J]. Optics Express, 28, 39241-39249(2020).

    Tools

    Get Citation

    Copy Citation Text

    Huan Chen, Gan Wu, Xuhui Sun, Yibing Ma, Yongchuang Chen, Chenglong Wang, Tong Wang, Yizheng Yao, Bing Gao, Hao Wu, Ronger Lu, Chao Zhang, Yiqiang Qin. Nonlinear Mode Conversion of Special Beams Based on Local Quasi-Phase-Matching[J]. Acta Optica Sinica, 2023, 43(14): 1419001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Feb. 15, 2023

    Accepted: Apr. 3, 2023

    Published Online: Jul. 13, 2023

    The Author Email: Chao Zhang (zhch@nju.edu.cn), Yiqiang Qin (yqqin@nju.edu.cn)

    DOI:10.3788/AOS230558

    Topics