Journal of Inorganic Materials, Volume. 40, Issue 6, 575(2025)
[1] LI X, WANG Z, HE C et al. Growth and piezo-/ferroelectric properties of PIN-PMN-PT single crystals[J]. Journal of Applied Physics, 111:, 034105(2012).
[2] CHANG Y, STEPHEN F P, YANG Z et al. (001) textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature rang[J]. Applied Physics Letters, 95:, 232905(2009).
[3] DAUMONT C, REN W, INFANTE I C. Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films[J]. Journal of Physics: Condensed Matter, 24, 162202(2012).
[4] ZHANG Q, BHARTU V, ZHAO X. Giant electrostriction and relaxor ferroelectric bahavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer[J]. Science, 280, 2101(1998).
[5] ZHOU M, SUN M, LI M M. Fabrication and properties of 1-3-2 multi-element piezoelectric composite[J]. Journal of Electroceramics, 28, 139(2012).
[6] LI F, CABRAL M J, XU B et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 364, 264(2019).
[8] DA SILVA B R C, WERNECK M M. Optical high-voltage sensor based on fiber Bragg grating and PZT piezoelectric ceramics[J]. IEEE Transactions on Instrumentation and Measurement, 60, 2118(2011).
[9] ZHENG Y Y, JIANG X P, JIANG F L. The properties of Mn-doped (Na(1-
[10] GENG H F, ZENG K, WANG B Q et al. Giant electric field- induced strain in lead-free piezoceramics[J]. Science, 378, 1125(2022).
[11] SAITO Y, TAKAO H, TANI T et al. Lead-free piezoceramics[J]. Nature, 432:, 84(2004).
[12] WEI H G, WANG H, XIA Y J et al. An overview of lead-free piezoelectric materials and devices[J]. Journal of Materials Chemistry C, 6:, 12446(2018).
[13] RODEL J, JO W, SEIFER K et al. Perspective on the development of lead-free piezoceramics[J]. Journal of the American Ceramic Society, 92, 1153(2009).
[14] LI P, ZHAI J W, SHEN B et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics[J]. Advanced Materials, 30:, 1705171(2018).
[15] LIU Y C, CHANG Y F, LI F et al. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba, Ca)(Ti, Zr)O3 through integrating crystallographic texture and domain engineering[J]. ACS Applied Materials & Interfaces, 9:, 29863(2017).
[16] PARK S E, SHROUT T R. Relaxor based ferroelectric single crystals for electro-mechanical actuators[J]. Materials Research Innovations, 1, 20(1997).
[17] ZHANG S J, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective[J]. Journal of Applied Physics, 111, 031301(2012).
[18] SUN E W, CAO W W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications[J]. Progress in Materials Science, 65:, 124(2014).
[19] LUO N N, LI Y Y, XIA Z G et al. Progress in lead-based ferroelectric and antiferroelectric single crystals: composition modification, crystal growth and properties[J]. CrystEngComm, 14:, 4547(2012).
[20] MESSING G, TROLIER-MCKINSTRY S, SABOLSKY E M et al. Templated grain growth of textured piezoelectric ceramics[J]. Critical Reviews in Solid State and Materials Sciences, 29:, 45(2004).
[21] MESSING G, POTERALA S, CHANG Y F et al. Texture-engineered ceramics—property enhancements through crystallographic tailoring[J]. Journal of Materials Research, 32:, 3219(2017).
[22] MORIANA A, ZHANG S J. Lead-free textured piezoceramics using tape casting: a review[J]. Journal of Materiomics, 4:, 277(2018).
[23] WU J, ZHANG S J, LI F. Prospect of texture engineered ferroelectric ceramics[J]. Applied Physics Letters, 121:, 120501(2022).
[25] ZHANG Z, DUAN X M, QIU B F et al. Preparation and anisotropic properties of textured structural ceramics: a review[J]. Journal of Advanced Ceramics, 8:, 289(2019).
[26] LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I[J]. Journal of Inorganic and Nuclear Chemistry, 9:, 113(1959).
[27] DOLLASE W A. Correction of intensities for preferred orientation in powder diffractometry—application of the March model[J]. Journal of Applied Crystallography, 19:, 267(1986).
[28] GOYAL A, FEENSTRA R, LIST F A et al. Using RABiTS to fabricate high-temperature superconducting wire[J]. JOM, 51:, 19(1999).
[29] JIN S, SHERWOOD R C, DOVER R B et al. High
[30] SAKKA Y, SUZUKI T S. Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field[J]. Journal of the Ceramic Society of Japan, 113:, 26(2005).
[32] SABOLSKY E M, MESSING G, TROLIER-MCKINSTRY S. Kinetics of templated grain growth of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3[J]. Journal of the American Ceramic Society, 84, 2507(2001).
[33] YAN Y K, CHO K, PRIYA S. Templated grain growth of <001>-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 piezoelectric ceramics for magnetic field sensors[J]. Journal of the American Ceramic Society, 94, 1784(2011).
[34] HUANG Q W, XU J, ZHU L H et al. Molten salt synthesis of acicular Ba2NaNb5O15 seed crystals[J]. Journal of the American Ceramic Society, 88, 447(2005).
[35] KAN Y M, JIN X H, WANG P L et al. Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes[J]. Materials Research Bulletin, 38:, 567(2003).
[36] SCHAAK R E, MALLOUK T E. Perovskites by design: a toolbox of solid-state reactions[J]. Chemical Materials, 14:, 1455(2002).
[37] SCHAAK R E, MALLOUK T E. Topochemical synthesis of three-dimensional perovskites from lamellar precursors[J]. Journal of the American Ceramic Society, 122:, 2798(2000).
[38] WATARI K, BRAHMAROUTU B, MESSING G et al. Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3[J]. Journal of Materials Research, 15:, 846(2000).
[39] LIU Y F, LU Y N, XU M et al. Topochemical reaction of SrTiO3 platelet crystals based on Sr3Ti2O7 platelet precursor in molten salt synthesis process[J]. Materials Chemistry and Physics, 114:, 37(2009).
[40] LIU H X, SUN X Q, ZHAO Q L et al. The syntheses and microstructures of tabular SrTiO3 crystal[J]. Solid-State Electronics, 47:, 2295(2003).
[41] SAITO Y, TAKAO H. Synthesizing of platelike {100} SrTiO3 particle by topochemical microcrystal conversion method[J]. Japanese Journal of Applied Physics, 45:, 7377(2006).
[42] CHANG Y F, NING H P, WU J et al. Formation mechanism of (001) oriented perovskite SrTiO3 microplatelets synthesized by topochemical microcrystal conversion[J]. Inorganic Chemistry, 53:, 11060(2014).
[43] WU J, CHANG Y F, LV W M et al. Topochemical transformation of single crystalline SrTiO3 microplatelets from Bi4Ti3O12 precursors and their orientation-dependent surface piezoelectricity[J]. CrystEngComm, 20:, 3084(2018).
[44] LIU D, YAN Y K, ZHOU H P. Synthesis of micron-scale platelet BaTiO3[J]. Journal of the American Ceramic Society, 90, 1323(2007).
[45] KRZMANC M M, JANCAR B, URSIC H et al. Tailoring the shape, size, crystal structure, and preferential growth orientation of BaTiO3 plates synthesized through a topochemical conversion process[J]. Crystal Growth & Design, 17:, 3210(2017).
[46] FENG Q, HIRASAWA M, YANAGISAWA K. Synthesis of crystal- axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process[J]. Chemistry Materials, 13:, 290(2001).
[47] FENG Q, ISHIKAWA Y, MAKITA Y et al. Solvothermal soft chemical synthesis and characterization of plate-like particles constructed from oriented BaTiO3 nanocrystals[J]. Journal of the Ceramic Society of Japan, 118, 141(2010).
[48] LV D Y, ZUO R Z, SU S. Processing and morphology of (111) BaTiO3 crystal platelets by a two-step molten salt method[J]. Journal of the American Ceramic Society, 95, 1838(2012).
[49] FU J, HOU Y D, ZHENG M P et al. Topochemical conversion of (111) BaTiO3 piezoelectric microplatelets using Ba6Ti17O40 as the precursor[J]. Crystal Growth & Design, 19:, 1198(2019).
[50] POTERALA S F, MEYER R J, MESSING G L. Synthesis of high aspect ratio PbBi4Ti4O15 and topochemical conversion to PbTiO3-based microplatelets[J]. Journal of the American Ceramic Society, 94, 2323(2011).
[51] LI L L, WANG J, GUO Q L et al. Fabrication and topchemical transformation mechanism of PbTiO3 microplatelets[J]. Ceramics International, 49:, 7970(2023).
[52] NA Y, KWON J, NAHM S et al. Morphological evolution of PbTiO3 microstructures synthesized by topochemical microcrystal conversion[J]. Journal of the American Ceramic Society, 105:, 47512(2022).
[53] FU J, HOU Y, ZHENG M et al. Topochemical build-up of BaTiO3 nanorods using BaTi2O5 as the template[J]. CrystEngComm, 19:, 1115(2017).
[54] HUANG K, HUANG T, HSIEH W. Morphology-controlled synthesis of barium titanate nanostructures[J]. Inorganic Chemistry, 48:, 9180(2009).
[55] HAYASHI Y, KIMURA T, TAKASHI Y. Preparation of rod-shaped BaTiO3 powder[J]. Journal of Materials Science, 21:, 757(1986).
[56] CHENG L, LI J. A review on one dimensional perovskite nanocrystals for piezoelectric applications[J]. Journal of Materiomics, 2:, 25(2016).
[57] DENG Y, WANG J, ZHU K et al. Synthesis and characterization of single-crystal PbTiO3 nanorods[J]. Material Letters, 59:, 3272(2005).
[58] DENG H, QIU Y, YANG S. General surfactant-free synthesis of MTiO3 (M=Ba, Sr, Pb) perovskite nanostrips[J]. Journal of Materials Chemistry, 19:, 976(2009).
[59] SABOLSKY E M, TROLIER-MCKINSTRY S, MESSING G. Dielectric and piezoelectric properties of <001> fiber-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics[J]. Journal of Applied Physics, 93, 4072(2003).
[60] RICHTER T, DENNELER S, SCHUH C et al. Textured PMN-PT and PMN-PZT[J]. Journal of the American Ceramic Society, 91, 929(2008).
[61] KWON S, SABOLSKY E M, MESSING G et al. High strain, <001> textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics: templated grain growth and piezoelectric properties[J]. Journal of the American Ceramic Society, 88, 312(2005).
[62] BROSNAN K H, POTERALA S F, MEYER R J et al. Templated grain growth of <001> textured PMN-28PT using SrTiO3 templates[J]. Journal of the American Ceramic Society, 92(2009).
[63] POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J et al. Processing, texture quality, and piezoelectric properties of <001>C textured (1-
[64] POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J et al. Fabrication and properties of radially <001>C textured PMN-PT cylinders for transducer applications[J]. Journal of Applied Physics, 112:, 014105(2012).
[65] POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J et al. Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN-PT ceramics[J]. Journal of Materials Research, 28, 2960(2013).
[66] AMORIN H, URSIC H, RAMOS P et al. Pb(Mg1/3Nb2/3)O3-PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach[J]. Journal of the American Ceramic Society, 97, 420(2014).
[67] THI M P, MARCH G, COLOMBAN P. Phase diagram and Raman imaging of grain growth mechanisms in highly textured Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics[J]. Journal of the European Ceramic Society, 25:, 3335(2005).
[68] YAN Y K, ZHOU Y, PRIYA S. Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O3-PbTiO3 <001>C radially textured cylinders[J]. Applied Physics Letters, 104:, 012910(2010).
[69] YAN Y K, WANG Y U, PRIYA S. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics[J]. Applied Physics Letters, 100:, 192905(2012).
[70] YAN Y K, CHO K, MAURYA D et al. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics[J]. Applied Physics Letters, 102:, 042903(2013).
[71] CHANG Y F, SUN Y, WU J et al. Formation mechanism of highly [001]C textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity[J]. Journal of the European Ceramic Society, 36:, 1973(2016).
[72] CHANG Y F, WATSON B, FANTON M et al. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics[J]. Applied Physics Letters, 111:, 232901(2017).
[73] WEI D D, YUAN Q B, ZHANG G Q et al. Templated grain growth and piezoelectric properties of <001>-textured PIN-PMN-PT ceramics[J]. Journal of Materials Research, 30, 2144(2015).
[74] DURAN C, DURSUN S, AKÇA E. High strain, <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 piezoelectric ceramics[J]. Scripta Materialia, 113:, 14(2016).
[75] DURAN C, CENGIZ S, ECEBAŞ N. Processing and characterization of <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 ceramics[J]. Journal of Materials Research, 32, 2471(2017).
[76] LEE T, LEE H, PARK S et al. Structural and piezoelectric properties of <001> textured PZT-PZNN piezoelectric ceramics[J]. Journal of the American Ceramic Society, 100:, 5681(2017).
[77] ZHOU J E, YAN Y K, PRIYA S et al. Computational study of textured ferroelectric polycrystals: dielectric and piezoelectric properties of template-matrix composites[J]. Journal of Applied Physics, 121:, 024101(2017).
[78] MING C, YANG T N, LUAN K et al. Microstructural effects on effective piezoelectric responses of textured PMN-PT ceramics[J]. Acta Materialia, 145:, 62(2018).
[79] SEABAUGH M M, SUVACI E, BRAHMAROUTU B et al. Modeling anisotropic single crystal growth kinetics in liquid phase sintered
[80] YANG S, WANG M W, WANG L et al. Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics[J]. Journal of the American Ceramic Society, 105:, 3322(2022).
[81] LIU L J, YANG B, LV R et al. Enhanced unipolar electrical fatigue resistance and related mechanism in grain-oriented Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 piezoceramics[J]. Journal of Materials Science & Technology, 145:, 40(2023).
[82] WEI D D, WANG H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3[J]. Journal of the American Ceramic Society, 100:, 1073(2017).
[83] YANG S, LI J L, LIU Y et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range[J]. Nature Communications, 12:, 1414(2021).
[84] JIA H R, LI Z, WU F et al. Extremely large strain response under low driving electric fields in lead-based textured piezoelectric ceramics[J]. Ceramics International, 49:, 2806(2023).
[85] LENG H Y, YAN Y K, WANG B et al. High performance high-power textured Mn/Cu-doped PIN-PMN-PT ceramics[J]. Acta Materialia, 234:, 118015(2022).
[86] LIU H R, YAN Y K, LENG H Y et al. High performance high power textured piezoceramics[J]. Applied Physics Letters, 116:, 252901(2020).
[87] YAN Y K, GENG L W, ZHU L F et al. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering[J]. Advanced Science, 9:, 2105715(2022).
[89] QIU R G, GUO F F, WU J et al. Enhanced grain orientation degree and electrical properties in PSN-PMN-PT textured ceramics under the effect of sintering aids[J]. Journal of Materials Science & Technology, 199:, 114(2024).
[90] DEVEMY S, COURTOIS C, CHAMPAGNE P et al. Textured PZT ceramics[J]. Powder Technology, 190, 141(2009).
Get Citation
Copy Citation Text
Jie WU, Shuai YANG, Mingwen WANG, Jinglei LI, Chunchun LI, Fei LI.
Category:
Received: Dec. 23, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Fei LI (ful5@xjtu.edu.cn)