Journal of Inorganic Materials, Volume. 40, Issue 6, 575(2025)
Piezoelectric materials, which serve as converters between mechanical energy and electric energy, are important functional materials. Recently, the technology for textured piezoelectric ceramics has become an important technical approach for developing the next generation of high-performance piezoelectric materials. By tailoring grain orientation, textured piezoelectric ceramics exhibit properties akin to single crystals, exhibiting enhanced piezoelectric and electromechanical properties, as well as improved thermal stability. Furthermore, as polycrystalline ceramics, textured ceramics inherit the advantages of traditional ceramic materials, including ease of fabrication, favorable mechanical properties, and suitability of special-shape and syntype. This paper provides a brief introduction to texturing technique, development of perovskite templates for textured ceramics, and research results related to lead titanate (PbTiO3, PT) based textured piezoelectric ceramics. It systemizes the development and status of the piezoelectric textured ceramics while summarizing their technical advantages. Additionally, the existing scientific problems and future challenges of PT-based textured piezoelectric ceramics are analyzed, focusing on the suitability of templates and matrix via theoretical prediction, the relationship between microstructure and macroscopic properties of textured ceramics, and piezoelectric devices based on textured piezoelectric ceramics. By reviewing the PT-based textured piezoelectric ceramics, this paper aims to provide an in-depth introduction to texturing techniques and theories, seeks to enhance understanding of textured piezoelectric ceramics, and promotes the development of high- performance piezoelectric materials. This work is expected to benefit the breakthrough innovation and leap forward development of next generation high-end piezoelectric devices.
Get Citation
Copy Citation Text
Jie WU, Shuai YANG, Mingwen WANG, Jinglei LI, Chunchun LI, Fei LI.
Category:
Received: Dec. 23, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Fei LI (ful5@xjtu.edu.cn)