Journal of Synthetic Crystals, Volume. 51, Issue 7, 1185(2022)
Crystalloblast and Its Affecting Factors in 300 mm Czochralski Silicon Single Crystal Growth
[1] [1] KALAEV V V. Liquid flow in a cubic cavity generated by gas motion along the free surface[J]. International Journal of Heat and Mass Transfer, 2012, 55(19/20): 5214-5221.
[2] [2] SCHWABE D, UECKER R, BERNHAGEN M, et al. An analysis of and a model for spiral growth of Czochralski-grown oxide crystals with high melting point[J]. Journal of Crystal Growth, 2011, 335(1): 138-147.
[3] [3] JUNG Y J, KIM W K, JUNG J H. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon[J]. Journal of the Korean Physical Society, 2014, 65(3): 362-367.
[4] [4] NAM W, HAHN Y, BAIK S. Local optimization of graphite heater to save a power consumption of Czochralski Si ingot grower for PV application[J]. Energy Procedia, 2017, 124: 767-776.
[7] [7] TAKAGI K, FUKAZAWA T. Effect of growth conditions on the shape of Bi4Ge3O12 single crystals and on melt flow patterns[J]. Journal of Crystal Growth, 1986, 76(2): 328-338.
[8] [8] OKANO Y, IKEYA T, HOSHIKAWA K, et al. Behavior of RAlO3 (R=Ho, Er and Dy) during crystal growth by the Czochralski method[J]. Journal of Crystal Growth, 1993, 131(3/4): 616-619.
[9] [9] FEI Y T, CHOU M M C, CHAI B H T. Crystal growth and morphology of substituted gadolinium gallium garnet[J]. Journal of Crystal Growth, 2002, 240(1/2): 185-189.
[10] [10] KAMADA K, YANAGIDA T, PEJCHAL J, et al. Scintillation properties of Ce doped Gd2Lu1(Ga, Al)5O12 single crystal grown by the micro-pulling-down method[J]. Journal of Crystal Growth, 2012, 352(1): 35-38.
[12] [12] TU H L, XIAO Q H, GAO Y, et al. Numerical analysis and simulation of Czochralski growth processes for large diameter silicon crystals[J]. Rare Metals, 2007, 26(6): 521-527.
[13] [13] VIRZI A. Finite element analysis of the thermal history for Czochralski growth of large diameter silicon single crystals[J]. Journal of Crystal Growth, 1989, 97(1): 152-161.
[14] [14] BORNSIDE D E, KINNEY T A, BROWN R A. Minimization of thermoelastic stresses in Czochralski grown silicon: application of the integrated system model[J]. Journal of Crystal Growth, 1991, 108(3/4): 779-805.
[15] [15] KIRPO M. Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT[J]. Journal of Crystal Growth, 2013, 371: 60-69.
[17] [17] ZHANG J, LIU D, PAN Y N. Suppression of oxygen and carbon impurity deposition in the thermal system of Czochralski monocrystalline silicon[J]. Journal of Semiconductors, 2020, 41(10): 102702.
[20] [20] ZHANG J, LIU D, ZHAO Y, et al. Impact of heat shield structure in the growth process of Czochralski silicon derived from numerical simulation[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 504-510.
[21] [21] LIU B T, YU Y, TANG X, et al. Influence of silicon melt convection on interface instability in large-size silicon carbide solution growth[J]. Journal of Crystal Growth, 2019, 527: 125248.
[23] [23] TAO G, JIN Z. A daptive cascade generalized predictive control[C]. International Journal of Intelligence Science, 2014, 4(7): 70-79.
Get Citation
Copy Citation Text
ZHANG Jing, LIU Ding. Crystalloblast and Its Affecting Factors in 300 mm Czochralski Silicon Single Crystal Growth[J]. Journal of Synthetic Crystals, 2022, 51(7): 1185
Category:
Received: Mar. 9, 2022
Accepted: --
Published Online: Aug. 12, 2022
The Author Email:
CSTR:32186.14.