Opto-Electronic Engineering, Volume. 44, Issue 1, 3(2017)
Advances of dispersion‐engineered metamaterials
[1] [1] Saleh B E A, Teich M C. Fundamentals of Photonics[M]. 2nd ed. New Jersey: Wiley & Sons, 2007.
[2] [2] Jackson J D. Classical Electrodynamics[M]. 3rd ed. Hoboken: Wiley, 1999.
[3] [3] Kurtzke C. Suppression of fiber nonlinearities by appropriate dispersion management[J]. IEEE Photonics Technology Letters, 1993, 5(10): 1250–1253.
[4] [4] Ganapathy R. Soliton dispersion management in nonlinear optical fibers[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12): 4544–4550.
[5] [5] Wang Peng, Mohammad N, Menon R. Chromatic-aberrationcorrected diffractive lenses for ultra-broadband focusing[J]. Scientific Reports, 2016, 6: 21545.
[6] [6] Kosaka H, Kawashima T, Tomita A, et al. Superprism phenomena in photonic crystals[J]. Physical Review B, 1998, 58(16): R10096–R10099.
[7] [7] Belshaw N S, Freedman P A, O’Nions R K, et al. A new variable dispersion double-focusing plasma mass spectrometer with performance illustrated for Pb isotopes[J]. International Journal of Mass Spectrometry, 1998, 181(1–3): 51–58.
[8] [8] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667–669.
[9] [9] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824–830.
[10] [10] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Proceedings of the Physical Society of London, 1902, 18: 269.
[11] [11] Zia R, Schuller J A, Chandran A, et al. Plasmonics: the next chip-scale technology[J]. Materialstoday, 2006, 9(7–8): 20–27.
[12] [12] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189–193.
[13] [13] Luo Xiangang, Yan Lianshan. Surface plasmon polaritons and its applications[J]. IEEE Photonics Journal, 2012, 4(2): 590–595.
[14] [14] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.
[15] [15] Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780–4782.
[16] [16] Luo Xiangang, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance[J]. Optics Express, 2004, 12(14): 3055–3065.
[17] [17] Fang N, Lee H, Sun Cheng, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534–537.
[18] [18] Liu Zhaowei, Wei Qihuo, Zhang Xiang. Surface Plasmon interference nanolithography[J]. Nano Letters, 2005, 5(5): 957–961.
[19] [19] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110.
[20] [20] Wang Changtao, Zhao Zeyu, Gao Ping, et al. Surface plasmon lithography beyond the diffraction limit[J]. Chinese Science Bulletin, 2016, 61(6): 585–599.
[21] [21] Maier S A. Plasmonics: Fundamentals and Applications[M]. New York: Springer, 2007.
[22] [22] Atwater H A. The promise of plasmonics[J]. Scientific American, 2007, 296: 56–62.
[23] [23] Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas & Propagation, 2015, 2015: 204127.
[24] [24] Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Berlin: Springer-Verlag, 1988.
[25] [25] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966–3969.
[26] [26] Melville D O S, Blaikie R J. Super-resolution imaging through a planar silver layer[J]. Optics Express, 2005, 13(6): 2127–2134.
[27] [27] Ramakrishna S A, Pendry J B, Wiltshire M C K, et al. Imaging the near field[J]. Journal of Modern Optics, 2003, 50(9): 1419–1430.
[28] [28] Xiong Yi, Liu Zhaowei, Sun Cheng, et al. Two-dimensional Imaging by far-field superlens at visible wavelengths[J]. Nano Letters, 2007, 7(11): 3360–3365.
[29] [29] Xu T, Fang L, Ma J, et al. Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns[J]. Applied Physics B, 2009, 97(1): 175–179.
[30] [30] Wang Changtao, Gao Ping, Tao Xing, et al. Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films[J]. Applied Physics Letters, 2013, 103(3): 031911.
[31] [31] High A A, Devlin R C, Dibos A, et al. Visible-frequency hyperbolic metasurface[J]. Nature, 2015, 522(7555): 192–196.
[32] [32] Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations[J]. Physical Review B, 2006, 74(7): 075103.
[33] [33] Smolyaninov I I, Hung Y J, Davis C C. Magnifying superlens in the visible frequency range[J]. Science, 2007, 315(5819): 1699–1701.
[34] [34] Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit[J]. Optics Express, 2006, 14(18): 8247–8256.
[35] [35] Guo Z, Zhao Z Y, Yan L S, et al. Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films[J]. Applied Physics Letters, 2014, 105(14): 141107.
[36] [36] Xu Ting, Lezec H J. Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial[J]. Nature Communications, 2014, 5: 4141.
[37] [37] Xu Ting, Zhao Yanhui, Ma Junxian, et al. Sub-diffraction-limited interference photolithography with metamaterials[J]. Optics Express, 2008, 16(18): 13579–13584.
[38] [38] Xiong Yi, Liu Zhaowei, Zhang Xiang. Projecting deepsubwavelength patterns from diffraction-limited masks using metal-dielectric multilayers[J]. Applied Physics Letters, 2008, 93(11): 111116.
[39] [39] Liang Gaofeng, Wang Changtao, Zhao Zeyu, et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography[J]. Advanced Optical Materials, 2015, 3(9): 1248–1256.
[40] [40] Guo Yinghui, Yan Lianshan, Pan Wei, et al. A plasmonic splitter based on slot cavity[J]. Optics Express, 2011, 19(15): 13831–13838.
[41] [41] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029.
[42] [42] Shi Haofei, Wang Changtao, Du Chunlei, et al. Beam manipulating by metallic nano-slits with variant widths[J]. Optics Express, 2005, 13(18): 6815–6820.
[43] [43] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.
[44] [44] Xu Yadong, Fu Yangyang, Chen Huanyang. Planar gradient metamaterials. Nature Reviews Materials, 2016, 1: 16067.
[45] [45] Pu Mingbo, Hu Chenggang, Wang Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413–17420.
[46] [46] Pu Mingbo, Chen Po, Wang Yanqi, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906.
[47] [47] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434.
[48] [48] Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[ J]. Optics Letters, 2012, 37(11): 2133–2135.
[49] [49] Pu Mingbo, Wang Min, Hu Chenggang, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime[J]. Optics Express, 2012, 20(23): 25513–25519.
[50] [50] Ye Dexin, Wang Zhiyu, Xu Kuiwen, et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption[J]. Physical Review Letters, 2013, 111(18): 187402.
[51] [51] Dirdal C A, Skaar J. Superpositions of Lorentzians as the class of causal functions[J]. Physical Review A, 2013, 88(3): 033834.
[52] [52] Jiang Zhihao, Yun S, Lin Lan, et al. Tailoring dispersion for broadband low-loss optical metamaterials using deepsubwavelength inclusions[J]. Scientific Reports, 2013, 3: 1571.
[53] [53] Luo Xiangang, Ishihara T. Sub 100 nm lithography based on plasmon polariton resonance[C]. Proceedings of 2003 International Microprocesses and Nanotechnology Conference, Tokyo, Japan, 2003: 138–139.
[54] [54] Yao Hanmin, Yu Guobin, Yan Peiying, et al. Patterning sub 100 nm isolated patterns with 436 nm lithography[C]. Proceedings of 2003 International Microprocesses and Nanotechnology Conference, Tokyo, Japan, 2003: 130.
[55] [55] Wang Changtao, Gao Ping, Zhao Zeyu, et al. Deep sub- wavelength imaging lithography by a reflective plasmonic slab[J]. Optics Express, 2013, 21(18): 20683–20691.
[56] [56] Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805–18812.
[57] [57] Zhao Zeyu, Luo Yunfei, Zhang Wei, et al. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination[J]. Scientific Reports, 2015, 5: 15320.
[58] [58] Liu Zhaowei, Lee H, Xiong Yi, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686.
[59] [59] Ren Guowei, Wang Changtao, Yi Guangwei, et al. Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer[J]. Plasmonics, 2013, 8(2): 1065–1072.
[60] [60] Liu Ling, Liu Kaipeng, Zhao Zeyu, et al. Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer[J]. RSC Advances, 2016, 6: 95973-95978.
[61] [61] Sun Jingbo, Xu T, Litchinitser N M. Experimental demonstration of demagnifying hyperlens[J]. Nano Letters, 2016, 16(12): 7905-7909.
[62] [62] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782.
[63] [63] Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777–1780.
[64] [64] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.
[65] [65] Hashemi H, Zhang Baile, Joannopoulos J D, et al. Delay-bandwidth and delay-loss limitations for cloaking of large objects[J]. Physical Review Letters, 2010, 104(25): 253903.
[66] [66] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901.
[67] [67] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366–369.
[68] [68] Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics[J]. Nature Materials, 2009, 8(7): 568–571.
[69] [69] Gabrielli L H, Cardenas J, Poitras C B, et al. Silicon nanostructure cloak operating at optical frequencies[J]. Nature Photonics, 2009, 3(8): 461–463.
[70] [70] Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129–132.
[71] [71] Ma Huifeng, Cui Tiejun. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 2010, 1(8): 124.
[72] [72] Zentgraf T, Liu Yongmin, Mikkelsen M H, et al. Plasmonic Luneburg and Eaton lenses[J]. Nature Nanotechnology, 2011, 6(3): 151–155.
[73] [73] Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106.
[74] [74] Cheng Qiang, Cui Tiejun, Jiang Weixiang, et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 2010, 12(6): 063006.
[75] [75] Sheng Chong, Liu Hui, Wang Yueheng, et al. Trapping light by mimicking gravitational lensing[J]. Nature Photonics, 2013, 7(11): 902–906.
[76] [76] Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822.
[77] [77] Ni Xingjie, Wong Zijing, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310–1314.
[78] [78] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.
[79] [79] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.
[80] [80] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154.
[81] [81] Lier E, Werner D H, Scarborough C P, et al. An octave- bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials, 2011, 10(3): 216–222.
[82] [82] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21): 213902.
[83] [83] Wang Min, Huang Cheng, Pu Mingbo, et al. Electric-controlled scanning Luneburg lens based on metamaterials[J]. Applied Physics A, 2013, 111(2): 445–450.
[84] [84] Bharadwaj P, Deutsch B, Novotny L. Optical antennas[J]. Advances in Optics and Photonics, 2009, 1(3): 438–483.
[85] [85] Fang Zheyu, Fan Linran, Lin Chenfang, et al. Plasmonic coupling of bow tie antennas with Ag nanowire[J]. Nano Letters, 2011, 11(4): 1676–1680.
[86] [86] Greffet J J. Nanoantennas for light emission[J]. Science, 2005, 308(5728): 1561–1562.
[87] [87] Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture[J]. Science, 2002, 297(5582): 820–822.
[88] [88] Martín-Moreno L, Garcia-Vidal F J, Lezec H J, et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Physical Review Letters, 2003, 90(16): 167401.
[89] [89] Wang Changtao, Du Chunlei, Luo Xiangang. Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film[J]. Physical Review B, 2006, 74(24): 245403.
[90] [90] Wang Changtao, Du Chunlei, Lv Yueguang, et al. Surface electromagnetic wave excitation and diffraction by subwavelength slit with periodically patterned metallic grooves[J]. Optics Express, 2006, 14(12): 5671–5681.
[91] [91] Li X, Zhao Z, Feng Q, et al. Abnormal nearly homogeneous radiation by slit-grooves structure[J]. Applied Physics B, 2011, 102(4): 851–855.
[92] [92] Yu Nanfang, Kats M A, Pflügl C, et al. Multi-beam multi-wavelength semiconductor lasers[J]. Applied Physics Letters, 2009, 95(16): 161108.
[93] [93] Yu Nanfang, Fan J, Wang Qijie, et al. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nature Photonics, 2008, 2(9): 564–570.
[94] [94] Yu Nanfang, Capasso F. Wavefront engineering for mid-infrared and terahertz quantum cascade lasers [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B18–B35.
[95] [95] Aouani H, Mahboub O, Bonod N, et al. Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations[J]. Nano Letters, 2011, 11(2): 637–644.
[96] [96] Jun Y C, Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission[J]. Nature Communications, 2011, 2: 283.
[97] [97] Gorodetski Y, Drezet A, Genet C, et al. Generating far-field orbital angular momenta from near-field optical chirality[J]. Physical Review Letters, 2013, 110(20): 203906.
[98] [98] Pu Mingbo, Ma Xiaoliang, Zhao Zeyu, et al. Near-field collimation of light carrying orbital angular momentum with bull’s-eye assisted plasmonic coaxial waveguides[J]. Scientific Reports, 2015, 5: 12108.
[99] [99] Yu Nanfang, Wang Qijie, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials, 2010, 9(9): 730–735.
[100] [100] Huang Cheng, Zhao Zeyu, Feng Qin, et al. Grooves-assisted surface wave modulation in two-slot array for mutual coupling reduction and gain enhancement[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 912–915.
[101] [101] Huang Cheng, Du Chunlei, Luo Xiangang. A waveguide slit array antenna fabricated with subwavelength periodic grooves[J]. Applied Physics Letters, 2007, 91(14): 143512.
[102] [102] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753–4759.
[103] [103] Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885.
[104] [104] Xu Ting, Du Chunlei, Wang Changtao, et al. Subwavelength imaging by metallic slab lens with nanoslits[J]. Applied Physics Letters, 2007, 91(20): 201501.
[105] [105] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235–238.
[106] [106] Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Letters, 2013, 13(1): 159-163.
[107] [107] Xu Ting, Zhao Yanhui, Gan Dachun, et al. Directional excitation of surface plasmons with subwavelength slits[J]. Applied Physics Letters, 2008, 92(10): 101501.
[108] [108] Sun Jingbo, Wang Xi, Xu T, et al. Spinning light on the nanoscale[J]. Nano Letters, 2014, 14(5): 2726–2729.
[109] [109] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212–26221.
[110] [110] Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069.
[111] [111] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431.
[112] [112] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized pancharatnam–berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328–330.
[113] [113] Ni Xingjie, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.
[114] [114] Ni Xingjie, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72.
[115] [115] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168.
[116] [116] Zhang Xueqian, Tian Zhen, Yue Weisheng, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567–4572.
[117] [117] Liu Lixiang, Zhang Xueqian, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031–5036.
[118] [118] Zhang Xueqian, Xu Yuehong, Yue Weisheng, et al. Anomalous surface wave launching by handedness phase control[J]. Advanced Materials, 2015, 27(44): 7123–7129.
[119] [119] Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229.
[120] [120] Li Yongfeng, Zhang Jieqiu, Qu Shaobo, et al. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces[J]. Applied Physics Letters, 2014, 104(22): 221110.
[121] [121] Giovampaola C D, Engheta N. Digital metamaterials[J]. Nature Materials, 2014, 13(12):1115-1121.
[122] [122] Cui Tiejun, Qi Meiqing, Wan Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218.
[123] [123] Gao Lihua, Cheng Qiang, Yang Jing, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 2015, 4(9): e324.
[124] [124] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524.
[125] [125] Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276. ( in press)
[126] [126] Sun Hongbo. The mystical interlinks: Mechanics, religion or optics-[J]. Sci China-Phys Mech Astron, 2016, 59: 614202.
[127] [127] Hong Minghui. Metasurface wave in planar nano-photonics[J]. Science Bulletin, 2016, 61(2):112–113.
[128] [128] Ding Xumin, Monticone F, Zhang Kuang, et al. Ultrathin pancharatnam–berry metasurface with maximal cross- polarization efficiency[J]. Advanced Materials, 2015, 27(7): 1195–1200.
[129] [129] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.
[130] [130] Shen Xiaopeng, Cui Tiejun, Zhao Junming, et al. Polarization-independent wide-angle triple-band metamaterial absorber [J]. Optics Express, 2011, 19(10): 9401–9407.
[131] [131] Ye Yuqian, Jin Yi, He Sailing. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 2010, 27(3): 498–504.
[132] [132] Grant J, Ma Yong, Saha S, et al. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 2011, 36(17): 3476–3478.
[133] [133] Hendrickson J, Guo Junpeng, Zhang Boyang, et al. Wideband perfect light absorber at midwave infrared using multiplexed metal structures[J]. Optics Letters, 2012, 37(3): 371–373.
[134] [134] Cui Yanxia, Xu Jun, Fung K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 2011, 99(25): 253101.
[135] [135] Wang Jing, Chen Yiting, Chen Xi, et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber[J]. Optics Express, 2011, 19(15): 14726–14734.
[136] [136] Hao Jiaming, Zhou Lei, Qiu Min. Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. Physical Review B, 2011, 83(16): 165107.
[137] [137] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs[J]. Plasmonics, 2014, 9(4): 951–957.
[138] [138] Ding Fei, Cui Yanxia, Ge Xiaochen, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 3506.
[139] [139] Cui Yanxia, Fung K H, Xu Jun, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443–1447.
[140] [140] Yin Sheng, Zhu Jianfei, Xu Wendao, et al. High-performance terahertz wave absorbers made of silicon-based metamaterials [J]. Applied Physics Letters, 2015, 107(7): 73903.
[141] [141] Zang Xiaofei, Shi Cheng, Chen Lin, et al. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings[J]. Scientific Reports, 2015, 5: 8091.
[142] [142] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230–1234.
[143] [143] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566–27575.
[144] [144] Shi Cheng, Zang Xiaofei, Wang Yiqiao, et al. A polarization-independent broadband terahertz absorber[J]. Applied Physics Letters, 2014, 105(3): 031104.
[145] [145] Li Wei, Guler U, Kinsey N, et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 2014, 26(47): 7959–7965.
[146] [146] Jang T, Youn H, Shin Y J, et al. Transparent and flexible polarization-independent microwave broadband absorber[J]. ACS Photonics, 2014, 1(3): 279–284.
[147] [147] Zhao Junming, Sun Liang, Zhu Bo, et al. One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial[J]. Optics Express, 2015, 23(4): 4658–4665.
[148] [148] Hao Jiaming, Yuan Yu, Ran Lixin, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908.
[149] [149] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307.
[150] [150] Pu Mingbo, Feng Qin, Wang Min, et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination[J]. Optics Express, 2012, 20(3): 2246–2254.
[151] [151] Pu Mingbo, Feng Qin, Hu Chenggang, et al. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film[J]. Plasmonics, 2012, 7(4): 733–738.
[152] [152] Wang Yanqin, Pu Mingbo, Hu Chenggang, et al. Dynamic manipulation of polarization states using anisotropic meta-surface [J]. Optics Communications, 2014, 319: 14–16.
[153] [153] Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Advanced Optical Matererials, 2016, 4: 659-663.
[154] [154] Li Sucheng, Luo Jie, Anwar S, et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation[J]. Physical Review B, 2015, 91(22): 220301.
[155] [155] Li Sucheng, Duan Qian, Li Shuo, et al. Perfect electromagnetic absorption at one-atom-thick scale[J]. Applied Physics Letters, 2015, 107: 181112.
[156] [156] Mousavi S A, Plum E, Shi Jinhui, et al. Coherent control of optical polarization effects in metamaterials[J]. Scientific Reports, 2015, 5: 8977.
[157] [157] Papaioannou M, Plum E, Valente J, et al. Two-dimensional control of light with light on metasurfaces[J]. Light: Science & Applications, 2016, 5: e16070.
[158] [158] Fan Kebin, Padilla W J. Dynamic electromagnetic metamaterials [J]. Materialstoday, 2015, 18(1): 39–50.
[159] [159] Zheludev N I, Plum E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 16–22.
[160] [160] Wang Min, Hu Chenggang, Pu Mingbo, et al. Electrical tunable L-band absorbing material for two polarisations[J]. Electronics Letters, 2012, 48(16): 1002–1003.
[161] [161] Wu Xiaoyu, Hu Chenggang, Wang Yanqin, et al. Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency[J]. AIP Advances, 2013, 3(2): 022114.
[162] [162] Zhu Bo, Feng Yijun, Zhao Junming, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J]. Applied Physics Letters, 2010, 97(5): 051906.
[163] [163] Zhu Bo, Feng Yijun, Zhao Junming, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber [J]. Optics Express, 2010, 18(22): 23196–23203.
[164] [164] Zhu Bo, Zhao Junming, Feng Yijun. Active impedance metasurface with full 360° reflection phase tuning[J]. Scientific Reports, 2013, 3: 3059.
[165] [165] Ma Xiaoliang, Pan Wenbo, Huang Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945–949.
[166] [166] Cui Jianhua, Huang Cheng, Pan Wenbo, et al. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror[J]. Scientific Reports, 2016, 6: 30771.
[167] [167] Xu Hexiu, Sun Shulin, Tang Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6: 27503.
[168] [168] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818–2823.
[169] [169] Chen J, Wang Weisong, Ji Fang, et al. Variable-focusing microlens with microfluidic chip[J]. Journal of Micromechanics and Microengineering, 2004, 14(5): 675–680.
[170] [170] Shaltout A M, Kildishev A V, Shalaev V M. Evolution of photonic metasurfaces: from static to dynamic[J]. Journal of the Optical Society of America B, 2016, 33(3): 501–510.
[171] [171] Liu Ming, Yin Xiaobo, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64–67.
[172] [172] Fang Zheyu, Wang Yumin, Schlather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 2014, 14(1): 299–304.
[173] [173] Li Wei, Chen Bigeng, Meng Chao, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955–959.
[174] [174] Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020.
[175] [175] Wang Dacheng, Zhang Lingchao, Gong Yandong, et al. Multiband switchable terahertz quarter-wave plates via phasechange metasurfaces[J]. IEEE Photonics Journal, 2016, 8(1): 5500308.
[176] [176] Wang Qian, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60–65.
[177] [177] Chen Yiguo, Li Xiong, Sonnefraud Y, et al. Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Advances of dispersion‐engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3
Category:
Received: Nov. 4, 2016
Accepted: --
Published Online: Feb. 23, 2017
The Author Email: (lxg@ioe.ac.cn)