Chinese Journal of Lasers, Volume. 48, Issue 17, 1707001(2021)

Reconstruction for Cherenkov-Excited Luminescence Scanned Tomography Based on Unet Network

Wenqian Zhang1,2, Jinchao Feng1,2、*, Zhe Li1,2, Zhonghua Sun1,2, and Kebin Jia1,2
Author Affiliations
  • 1Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • 2Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
  • show less
    References(19)

    [2] Blankenberg F G. Molecular imaging with single photon emission computed tomography[J]. IEEE Engineering in Medicine and Biology Magazine, 23, 51-57(2004).

    [3] Huang W, Li X, Morris E A et al. The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumors in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 17943-17948(2008).

    [4] Nienhaus G U, Wiedenmann J. Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development[J]. Chemphyschem, 10, 1369-1379(2009).

    [5] Zhang R, D'souza A V, Gunn J R et al. Cherenkov-excited luminescence scanned imaging[J]. Optics Letters, 40, 827-830(2015).

    [6] Pogue B W, Feng J C, LaRochelle E P et al. Maps of in vivo oxygen pressure with submillimeter resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging[J]. Nature Biomedical Engineering, 2, 254-264(2018).

    [7] Xie L N, Gao C Y, Wang Q et al. Research progress of photodynamic therapy based on Cherenkov radiation for tumors[J]. Laser & Optoelectronics Progress, 57, 190002(2020).

    [8] Feng J C, Bruza P, Dehghani H et al. Cherenkov-excited luminescence sheet imaging (CELSI) tomographic reconstruction[J]. Proceedings of SPIE, 10049, 1004912(2017).

    [9] Cao X, Zhang B, Wang X et al. An adaptive Tikhonov regularization method for fluorescence molecular tomography[J]. Medical & Biological Engineering & Computing, 51, 849-858(2013).

    [10] Feng J C, Chang D, Li Z et al. Cherenkov-excited luminescence scanned tomography reconstruction based on approximate message passing[J]. Chinese Journal of Lasers, 47, 0207027(2020).

    [11] Jain V, Seung H S. Natural image denoising with convolutional networks[C]. //International Conference on Neural Information Processing Systems, December 8-11, 2008, Vancouver, British Columbia, Canada, 769-776(2008).

    [12] Xu L, Ren J S J, Liu C et al. Deep convolutional neural network for image deconvolution[C]. //28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014, December 8-13, 2014, Montreal, Quebec, Canada, 1790-1798(2014).

    [13] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).

    [14] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [15] Lu W Q, Duan J M, Orive-Miguel D et al. Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography[J]. Biomedical Optics Express, 10, 2684-2707(2019).

    [16] Dehghani H, Eames M E, Yalavarthy P K et al. Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction[J]. Communications in Numerical Methods in Engineering, 25, 711-732(2008).

    [17] Fu J, Dong J B, Zhao F. A deep learning reconstruction framework for differential phase-contrast computed tomography with incomplete data[J]. IEEE Transactions on Image Processing, 29, 2190-2202(2020).

    [18] Liu D, Li Y C. Quality assessment of remote sensing images based on deep learning and human visual system[J]. Laser & Optoelectronics Progress, 56, 061101(2019).

    [19] Zhao H, Gallo O, Frosio I et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 3, 47-57(2017).

    [20] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    Tools

    Get Citation

    Copy Citation Text

    Wenqian Zhang, Jinchao Feng, Zhe Li, Zhonghua Sun, Kebin Jia. Reconstruction for Cherenkov-Excited Luminescence Scanned Tomography Based on Unet Network[J]. Chinese Journal of Lasers, 2021, 48(17): 1707001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Jan. 11, 2021

    Accepted: Mar. 11, 2021

    Published Online: Sep. 1, 2021

    The Author Email: Feng Jinchao (fengjc@bjut.edu.cn)

    DOI:10.3788/CJL202148.1707001

    Topics