Journal of Quantum Optics, Volume. 30, Issue 2, 20101(2024)

Single-photon Scattering in Giant-atom Waveguide Systems with Modulated Coupling Phases

LI Shu-yu1, WU Huai-zhi1, HAN Ya-shuai2, and HU Chang-sheng2、*
Author Affiliations
  • 1Fujian Key Laboratory of Quantum Information and Quantum Optics & Department of Physics, Fuzhou University, Fuzhou 350116, China
  • 2School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
  • show less
    References(38)

    [1] [1] WALLS D F, MILBURN G J. Quantum Optics[M]. 2nd ed. Berlin Heidelberg: Springer-Verlag, 2008. DOI: 10.1007/978-3-540-28574-8.

    [2] [2] HANSON R, KOUWENHOVEN L P, PETTA J R, et al. Spins in few-electron quantum dots[J]. Rev Mod Phys, 2007, 79(4):1217‒1265. DOI: 10.1103/RMP.79.1217.

    [3] [3] YOU J Q, NORI F. Atomic physics and quantum optics using superconducting circuits[J]. Nature, 2011, 474(7353):589‒597. DOI: 10.1038/N.10122.

    [4] [4] XIANG Z L, ASHHAB S, YOU J Q, et al. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems[J]. Rev Mod Phys, 2013, 85(2):623‒653. DOI: 10.1103/RMP.85.623.

    [5] [5] GU X, KOCKUM A F, MIRANOWICZ A, et al. Microwave photonics with superconducting quantum circuits[J]. Phy Rep, 2017, 718‒719:1‒102. DOI: 10.1016/PR.2017.10.002.

    [6] [6] KOCKUM A F, NORI F. Quantum bits with Josephson junctions[M]//TAFURI F. Fundamentals and Frontiers of the Josephson effect. Switzerland: Springer Nature, 2019:703‒741. DOI: 10.1007/978-3-030-20726-7_17.

    [7] [7] MANENTI R, KOCKUM A F, PATTERSON A, et al. Circuit quantum acoustodynamics with surface acoustic waves[J]. Nat Commun, 2017, 8(1):975. DOI: 10.1038/NC.41467-017-01063-9.

    [8] [8] GUO L, GRIMSMO A, KOCKUM A F, et al. Giant acoustic atom: a single quantum system with a deterministic time delay[J]. Phys Rev A, 2017, 95(5):053821. DOI: 10.1103/PRA.95.053821.

    [9] [9] ANDERSSON G, SURI B, GUO L, et al. Non-exponential decay of a giant artificial atom[J]. Nat Phys, 2019, 15(11):1123‒1127. DOI: 10.1038/NP.41567-019-0605-6.

    [10] [10] ANDERSSON G, EKSTRM M K, DELSING P. Electromagnetically induced acoustic transparency with a superconducting circuit[J]. Phys Rev Lett, 2020, 124(24):240402. DOI: 10.1103/PRL.124.240402.

    [11] [11] SORO A, KOCKUM A F. Chiral quantum optics with giant atoms[J]. Phys Rev A, 2022, 105(2):023712. DOI: 10.1103/PRA.105.023712.

    [12] [12] GUSTAFSSON M V, AREF T, KOCKUM A F, et al. Propagating phonons coupled to an artificial atom[J]. Science, 2014, 346(6206):207‒211. DOI: 10.1126/S.1257219.

    [13] [13] KANNAN B, RUCKRIEGEL M J, CAMPBELL D L, et al. Waveguide quantum electrodynamics with superconducting artificial giant atoms[J]. Nature, 2020, 583(7818):775‒779. DOI: 10.1038/N.41586-020-2529-9.

    [14] [14] VADIRAJ A M, ASK A, MCCONKEY T G, et al. Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics[J]. Phys Rev A, 2021, 103(2):023710. DOI: 10.1103/PRA.103.023710.

    [15] [15] FRISK KOCKUM A, DELSING P, JOHANSSON G. Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom[J]. Phys Rev A, 2014, 90(1):013837. DOI: 10.1103/PRA.90.013837.

    [16] [16] QIU Q Y, WU Y, L X Y. Collective radiance of giant atoms in non-Markovian regime[J]. Sci China Phys Mech Astron, 2023, 66(2):224212. DOI: 10.1007/SCP.11433-022-1990-x.

    [17] [17] XIAO H, WANG L, LI Z H, et al. Bound state in a giant atom-modulated resonators system[J]. npj Quantum Information, 2022, 8(1):80. DOI: 10.1038/NQI.41534-022-00591-7.

    [18] [18] ZHAO W, WANG Z. Single-photon scattering and bound states in an atom-waveguide system with two or multiple coupling points[J]. Phys Rev A, 2020, 101(5):053855. DOI: 10.1103/PRA.101.053855.

    [19] [19] GUO S, WANG Y, PURDY T, et al. Beyond spontaneous emission: giant atom bounded in the continuum[J]. Phys Rev A, 2020, 102(3):033706. DOI: 10.1103/PRA.102.033706.

    [20] [20] DU L, CHEN Y T, LI Y. Nonreciprocal frequency conversion with chiral Lambda-type atoms[J]. Phys Rev Res, 2021, 3(4):043226. DOI: 10.1103/PRR.3.043226.

    [21] [21] DU L, ZHANG Y, WU J H, et al. Giant atoms in a synthetic frequency dimension[J]. Phys Rev Lett, 2022, 128(22):223602. DOI: 10.1103/PRL.128.223602.

    [22] [22] WANG X, LI H R. Chiral quantum network with giant atoms[J]. Quantum Sci Technol, 2022, 7(3):035007. DOI: 10.1088/2058-9565/ac6a04.

    [23] [23] ZHOU J, YIN X L, LIAO J Q. Chiral and nonreciprocal single-photon scattering in a chiral-giant-molecule waveguide-QED system[J]. Phys Rev A, 2023, 107(6):063703. DOI: 10.1103/PRA.107.063703.

    [24] [24] CILLUFFO D, CAROLLO A, LORENZO S, et al. Collisional picture of quantum optics with giant emitters[J]. Phys Rev Res, 2020, 2(4):043070. DOI: 10.1103/PRR.2.043070.

    [25] [25] YIN X L, LUO W B, LIAO J Q. Non-Markovian disentanglement dynamics in double-giant-atom waveguide-QED systems[J]. Phys Rev A, 2022, 106(6):063703. DOI: 10.1103/PRA.106.063703.

    [26] [26] CAI Q Y, JIA W Z. Coherent single-photon scattering spectra for a giant-atom waveguide-QED system beyond the dipole approximation[J]. Phys Rev A, 2021, 104(3):033710. DOI: 10.1103/PRA.104.033710.

    [27] [27] FENG S L, JIA W Z. Manipulating single-photon transport in a waveguide-QED structure containing two giant atoms[J]. Phys Rev A, 2021, 104(6):063712. DOI: 10.1103/PRA.104.063712.

    [28] [28] PENG Y P, JIA W Z. Single-photon scattering from a chain of giant atoms coupled to a one-dimensional waveguide[J]. Phys Rev A, 2023, 108(4):043709. DOI: 10.1103/PRA.108.043709.

    [29] [29] DU L, LI Y. Single-photon frequency conversion via a giant Lambda-type atom[J]. Phys Rev A, 2021, 104(2):023712. DOI: 10.1103/PRA.104.023712.

    [30] [30] CHEN Y T, DU L, GUO L, et al. Nonreciprocal and chiral single-photon scattering for giant atoms[J]. Commun Phys, 2022, 5(1):215. DOI: 10.1038/CP.42005-022-00991-3.

    [31] [31] SNCHEZ-BURILLO E, WAN C, ZUECO D, et al. Chiral quantum optics in photonic sawtooth lattices[J]. Phys Rev Res, 2020, 2(2):023003. DOI: 10.1103/PRR.2.023003.

    [32] [32] RAMOS T, PICHLER H, DALEY A J, et al. Quantum spin dimers from chiral dissipation in cold-atom chains[J]. Phys Rev Lett, 2014, 113(23):237203. DOI: 10.1103/PRL.113.237203.

    [33] [33] VERMERSCH B, RAMOS T, HAUKE P, et al. Implementation of chiral quantum optics with Rydberg and trapped-ion setups[J]. Phys Rev A, 2016, 93(6):063830. DOI: 10.1103/PRA.93.063830.

    [34] [34] SATHYAMOORTHY S R, TORNBERG L, KOCKUM A F, et al. Quantum nondemolition detection of a propagating microwave Photon[J]. Phys Rev Lett, 2014, 112(9):093601. DOI: 10.1103/PRL.112.093601.

    [35] [35] CHAPMAN B J, ROSENTHAL E I, KERCKHOFF J, et al. Widely tunable on-chip microwave circulator for superconducting quantum circuits[J]. Phys Rev X, 2017, 7(4):041043. DOI: 10.1103/PhysRevX.7.041043.

    [36] [36] MLLER C, GUAN S, VOGT N, et al. Passive on-chip superconducting circulator using a ring of tunnel junctions[J]. Phys Rev Lett, 2018, 120(21):213602. DOI: 10.1103/PRL.120.213602.

    [37] [37] GONZALEZ-BALLESTERO C, MORENO E, GARCIA-VIDAL F J, et al. Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings[J]. Phys Rev A, 2016, 94(6):063817. DOI: 10.1103/PRA.94.063817.

    [38] [38] LI S Y, ZHANG Z Q, DU L, et al. Single-photon scattering in giant-atom waveguide systems with chiral coupling[J]. Physical Review A, 2024, 109(6):063703. DOI: 10.1103/PhysRevA.109.063703.

    Tools

    Get Citation

    Copy Citation Text

    LI Shu-yu, WU Huai-zhi, HAN Ya-shuai, HU Chang-sheng. Single-photon Scattering in Giant-atom Waveguide Systems with Modulated Coupling Phases[J]. Journal of Quantum Optics, 2024, 30(2): 20101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 7, 2024

    Accepted: Dec. 26, 2024

    Published Online: Dec. 25, 2024

    The Author Email: HU Chang-sheng (hucs908@foxmail.com)

    DOI:10.3788/jqo20243002.0101

    Topics