Chinese Journal of Lasers, Volume. 44, Issue 2, 201002(2017)
Research Progress on Spectral Beam Combining Technology of High-Power Fiber Lasers
[1] [1] Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056.
[2] [2] Tünnermann A, Schreiber T, Rser F, et al. The renaissance and bright future of fibre lasers[J]. Journal of Physics B, 2005, 38: S681-S693.
[3] [3] Limpert J, Rser F, Klingebiel S, et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 537-545.
[4] [4] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.
[5] [5] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.
[6] [6] Eidam T, Wirth C, Jauregui C, et al. Experimental observation of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.
[7] [7] Bochove E. Theory of spectral beam combining of fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(5): 432-445.
[8] [8] Augst S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers[J]. Optics Letters, 2003, 28(5): 331-333.
[9] [9] Liu A P, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[C]. SPIE, 2004, 5335: 81-88.
[10] [10] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577.
[11] [11] Augst S J, Ranka J K, Fan T Y, et al. Beam combining of ytterbium fiber amplifiers[J]. Journal of the Optical Society of America B, 2007, 24(8): 1707-1715.
[12] [12] Sprangle P, Ting A, Penano J, et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 45(2): 138-148.
[13] [13] Noordegraaf D, Maack M D, Skovgaard P M W, et al. All-fiber 7×1 signal combiner for incoherent laser beam combining[C]. SPIE, 2011, 7914: 79142L.
[14] [14] Swanson G J, Leger J R, Holz M. Aperture filling of phase-locked laser arrays[J]. Optics Letters, 1987, 12(4): 245-247.
[15] [15] He B, Lou Q, Zhou J, et al. High power coherent beam combination from two fiber lasers[J]. Optics Express, 2006, 14(7): 2721-2726.
[16] [16] Cheung E C, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 2008, 33(4): 354-356.
[17] [17] Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 2010, 35(10): 1542-1544.
[18] [18] Zhou P, Ma Y, Wang X L, et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm[J]. Optics Letters, 2009, 34(19): 2939-2941.
[19] [19] Yu C X, August S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.
[20] [20] Ma P, Tao R, Wang X, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Optics Express, 2014, 22(4): 4123-4130.
[21] [21] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834.
[22] [22] Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55(9): 096101.
[23] [23] Lhermite J, Desfarges-Berthelemot A, Kermene V, et al. Passive phase locking of an array of four fiber amplifiers by an all-optical feedback loop[J]. Optics Letters, 2007, 32(13): 1842-1844.
[24] [24] Liu H, He B, Zhou J, et al. Coherent beam combination of two nanosecond fiber amplifiers by all-optical feedback loop[J]. Optics Letters, 2012, 37(18): 3885-3887.
[25] [25] Yang Y, Hu M, He B, et al. Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source[J]. Optics Letters, 2013, 38(6): 854-856.
[26] [26] Yang Y, Liu H, Zheng Y, et al. Dammann-grating-based passive phase locking by an all-optical feedback loop[J]. Optics Letters, 2014, 39(3): 708-710.
[27] [27] Klingebiel S, Rser F, Orta B, et al. Spectral beam combining of Yb-doped fiber lasers with high efficiency[J]. Journal of the Optical Society of America B, 2007, 24(8): 1716-1720.
[28] [28] Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 487-497.
[29] [29] Loftus T H, Liu A P, Hoffman P R, et al. 258 W of spectrally beam combined power with near-diffraction limited beam quality[C]. SPIE, 2006, 6102: 61020S.
[30] [30] Schreiber T, Wirth C, Schmidt O, et al. Incoherent beam combining of continuous-wave and pulsed Yb-doped fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 354-360.
[31] [31] Cook C C, Fan T Y. Spectral beam combining of Yb-doped fiber lasers in an external cavity[C]. Advanced Solid State Lasers, 1999, 26: 163-166.
[32] [32] Ciapurin I V, Glebov L B, Glebova L N, et al. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating[C]. SPIE, 2003, 4974: 209-219.
[33] [33] Andrusyak O, Smirnov V, Venus G, et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 344-353.
[34] [34] Loftus T H, Liu A P, Hoffman P R, et al. 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality[J]. Optics Letters, 2007, 32(4): 349-351.
[35] [35] Sevian A, Andrusyak O, Ciapurin I, et al. Efficient power scaling of laser radiation by spectral beam combining[J]. Optics Letters, 2008, 33(4): 384-386.
[36] [36] Schmidt O, Wirth C, Tsybin I. Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources[J]. Optics Letters, 2009, 34(10): 1567-1569.
[37] [37] Wirth C, Schmidt O, Tsybin I, et al. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers[J]. Optics Express, 2009, 17(3): 1178-1183.
[38] [38] Schmidt O, Wirth C, Nodop D, et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filters[J]. Optics Express, 2009, 17(25): 22974-22982.
[39] [39] Madasamy P, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 337-343.
[40] [40] Schmidt O, Andersen T V, Limpert J, et al. 187 W, 3.7 mJ from spectrally combined pulsed 2 ns fiber amplifiers[J]. Optics Letters, 2009, 34(3): 226-228.
[41] [41] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16): 3118-3120.
[42] [42] Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Optics Express, 2013, 21(24): 29620-29627.
[43] [43] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[C]. SPIE, 2013, 8601: 860115.
[44] [44] Drachenberg D R, Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Applied Optics, 2014, 53(6): 1242-1246.
[45] [45] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]. SPIE, 2015, 9730: 97300Y.
[46] [46] Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg gratings[J]. High Power Laser and Particle beams, 2015, 27(7): 071012.
[47] [47] Ma Yi, Yan Hong, Tian Fei, et al. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle beams, 2015, 27(4): 040101.
[48] [48] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese J Lasers, 2016, 43(9): 0901009.
[49] [49] Zheng Y, Yang Y F, Wang J H, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071.
[50] [50] Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 2000, 25(6): 405-407.
[51] [51] Chann B, Huang R K, Missaggia L J, et al. Near-diffraction-limited diode laser arrays by wavelength beam combining[J]. Optics Letters, 2005, 30(16): 2104-2106.
[52] [52] Gopinath J T, Chann B, Fan T Y, et al. 1450-nm high-brightness wavelength-beam combined diode laser array[J]. Optics Express, 2008, 16(13): 9405-9410.
[53] [53] Dajani I, Zeringur C, Lu C, et al. Stimulated Brillouin scattering suppression through laser gain competition: Scalability to high power[J]. Optics Letters, 2010, 35(18): 3114-3116.
[54] [54] Dajani I, Zeringue C, Shay T M. Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 406-414.
[55] [55] Mermelstein M D, Andrejco M J, Fini J, et al. SBS suppression and acoustic management for high-power narrow-linewidth fiber lasers and amplifiers[C]. SPIE, 2010, 7580: 75801G.
[56] [56] Suradeepa V R. Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise[J]. Optics Express, 2013, 21(4): 4677-4687.
[57] [57] Gray S, Liu A, Walton D T, et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express, 2007, 15(25): 17044-17050.
[58] [58] Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single frequency Ytterbium-doped fiber master oscillator power amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 546-551.
[59] [59] Goodno G D, Book L D, Rothenberg J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier[J]. Optics Letters, 2009, 34(8): 1204-1206.
[60] [60] Khitrov V, Farley K, Leveille R, et al. kW level narrow linewidth Yb fiber amplifiers for beam combining[C]. SPIE, 2010, 7686: 76860A.
[61] [61] Engin D, Lu W, Akbulut M, et al. 1 kW cw Yb-fiber-amplifier with <0.5 GHz linewidth and near diffraction limited beam-quality, for coherent combining application[C]. SPIE, 2011, 7914: 791407.
[62] [62] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3): 666-669.
[63] [63] Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15): 17735-17744.
[64] [64] Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power[J]. Optics Express, 2016, 24(6): 6011-6020.
[65] [65] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]. SPIE, 2016, 9728: 972807.
[66] [66] Naderi N A, Flores A, Anderson B M, et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition[J]. Optics Letters, 2016, 41(17): 3964-3967.
[67] [67] Naderi N A, Dajani I, Flores A. High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5): 1018-1021.
[68] [68] Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020.
[69] [69] Ma P F, Tao R M, Su R T, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.
[70] [70] Liu G B, Yang Y F, Wang J H, et al. Stimulated Brillouin scattering enhancement factor improvement in 11.6 GHz linewidth, 1.5 kW Yb-doped fiber amplifier[J]. Chinese Physics Letters, 2016, 33(7): 074207.
[72] [72] von Elm R, Marois C. Beam-combiner for fiber-delivered laser-beams of different wavelengths: US8599487[P]. 2013-12-03.
[73] [73] Chang Y L, Kim B K, Sang S H, et al. Multi beam laser apparatus: US7991037[P]. 2011-08-02.
[74] [74] Gold R S, Jachimowicz K E. Beam combining/splitter cube prism for color polarization: US5067799[P]. 1991-11-26.
[75] [75] Pickering R D. Beam combining prism: US2983183[P]. 1961-05-09.
[76] [76] Perry M D, Boyd R D, Britten J A, et al. High-efficiency multilayer dielectric diffraction gratings[J]. Optics Letters, 1995, 20(8): 940-942.
[77] [77] Shore B W, Perry M D, Britten J A, et al. Design of high-efficiency dielectric reflection gratings[J]. Journal of the Optical Society of America A, 1997, 14(5): 1124-1136.
Get Citation
Copy Citation Text
Zheng Ye, Yang Yifeng, Zhao Xiang, Gong Weichao, Bai Gang, Zhang Jingpu, Liu Kai, Chen Xiaolong, Zhao Chun, Qi Yunfeng, Jin Yunxia, He Bing, Zhou Jun. Research Progress on Spectral Beam Combining Technology of High-Power Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 201002
Category: laser devices and laser physics
Received: Sep. 14, 2016
Accepted: --
Published Online: Feb. 22, 2017
The Author Email: