Journal of Synthetic Crystals, Volume. 51, Issue 7, 1248(2022)
Preparation of Bi4O5Br2/Ti3C2-Ru Composite Photocatalysts and Their Degradation Performances for Sulfamethoxazole
[2] [2] LI R, LIU J X, ZHANG X F, et al. Iodide-modified Bi4O5Br2 photocatalyst with tunable conduction band position for efficient visible-light decontamination of pollutants[J]. Chemical Engineering Journal, 2018, 339: 42-50.
[3] [3] DI J, XIA J X, JI M X, et al. Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight[J]. Journal of Materials Chemistry A, 2015, 3(29): 15108-15118.
[4] [4] CHEN Y Y, LI R P, GU Y, et al. Green and efficient degradation of cefoperazone sodium by Bi4O5Br2 leading to the production of non-toxic products: performance and degradation pathway[J]. Journal of Environmental Sciences, 2021, 100: 203-215.
[5] [5] YI F T, MA J Q, LIN C W, et al. Insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br2/g-C3N4 nanosheet[J]. Journal of Alloys and Compounds, 2020, 821: 153557.
[6] [6] LIAN W W, WANG L B, WANG X L, et al. Facile preparation of BiOCl/Ti3C2 hybrid photocatalyst with enhanced visible-light photocatalytic activity[J]. Functional Materials Letters, 2019, 12(1): 1850100.
[7] [7] JIANG N, DU Y, JI P H, et al. Enhanced photocatalytic activity of novel TiO2/Ag/MoS2/Ag nanocomposites for water-treatment[J]. Ceramics International, 2020, 46(4): 4889-4896.
[8] [8] AN X Q, WANG W, WANG J P, et al. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(16): 11405-11411.
[9] [9] XUE Q, ZHANG H J, ZHU M S, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials, 2017, 29(15): 1604847.
[10] [10] WU X H, WANG Z Y, YU M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials, 2017, 29(24): 1607017.
[11] [11] ZHAO D, CHEN Z, YANG W J, et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2[J]. Journal of the American Chemical Society, 2019, 141(9): 4086-4093.
[12] [12] CAO S W, SHEN B J, TONG T, et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction[J]. Advanced Functional Materials, 2018, 28(21): 1800136.
[13] [13] BAI Y, YANG P, WANG L, et al. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO[J]. Chemical Engineering Journal, 2019, 360: 473-482.
[14] [14] LIU Y P, LI Y H, LI X Y, et al. Regulating electron-hole separation to promote photocatalytic H2 evolution activity of nanoconfined Ru/MXene/TiO2 catalysts[J]. ACS Nano, 2020, 14(10): 14181-14189.
[15] [15] ZHANG W B, XIAO X, WU Q F, et al. Facile synthesis of novel Mn-doped Bi4O5Br2 for enhanced photocatalytic NO removal activity[J]. Journal of Alloys and Compounds, 2020, 826: 154204.
[16] [16] ZHANG R R, JIN J Y, JIA L M, et al. Fabrication of CdS/Ti3C2/g-C3N4NS Z-scheme composites with enhanced visible light-driven photocatalytic activity[J]. Environmental Science and Pollution Research International, 2022, 29(11): 16371-16382.
[17] [17] BHARATH G, RAMBABU K, HAI A, et al. Highly selective etherification of fructose and 5-hydroxymethylfurfural over a novel Pd-Ru/MXene catalyst for sustainable liquid fuel production[J]. International Journal of Energy Research, 2021, 45(10): 14680-14691.
[18] [18] XI Q, YUE X P, FENG J Q, et al. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution[J]. Journal of Solid State Chemistry, 2020, 289: 121470.
[19] [19] HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2014, 158/159: 96-105.
[20] [20] TU X M, LUO S L, CHEN G X, et al. One-pot synthesis, characterization, and enhanced photocatalytic activity of a BiOBr-graphene composite[J]. Chemistry-A European Journal, 2012, 18(45): 14359-14366.
[21] [21] ZHANG X, YANG P, YANG B, et al. Synthesis of novel Bi/Bi4O5Br2 via a UV light irradiation for decomposing the oil field pollutants[J]. Inorganic Chemistry Communications, 2020, 122: 108297.
[22] [22] RAN J R, GAO G P, LI F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nature Communications, 2017, 8: 13907.
[23] [23] BAI Y, CHEN T, WANG P Q, et al. Bismuth-rich Bi4O5X2 (X=Br, and I) nanosheets with dominant{101}facets exposure for photocatalytic H2 evolution[J]. Chemical Engineering Journal, 2016, 304: 454-460.
[24] [24] LI J Y, DONG X A, SUN Y J, et al. Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts[J]. Applied Catalysis B: Environmental, 2018, 226: 269-277.
[25] [25] LOU X, SHANG J, WANG L, et al. Enhanced photocatalytic activity of Bi24O31Br10: constructing heterojunction with BiOI[J]. Journal of Materials Science & Technology, 2017, 33(3): 281-284.
[26] [26] LI R, FENG J Q, ZHANG X C, et al. In situ reorganization of Bi3O4Br nanosheet on the Bi24O31Br10 ribbon structure for superior visible-light photocatalytic capability[J]. Separation and Purification Technology, 2020, 247: 117007.
Get Citation
Copy Citation Text
ZHANG Lei, LI Rui, FAN Caimei. Preparation of Bi4O5Br2/Ti3C2-Ru Composite Photocatalysts and Their Degradation Performances for Sulfamethoxazole[J]. Journal of Synthetic Crystals, 2022, 51(7): 1248
Category:
Received: Feb. 23, 2022
Accepted: --
Published Online: Aug. 12, 2022
The Author Email:
CSTR:32186.14.