Optical Communication Technology, Volume. 44, Issue 8, 27(2020)
Instantaneous frequency measurement of stimulated Brillouin scattering based on doped silica waveguides
[1] [1] KARIMI A, AGHAKHANI K, MANAVI S E, et al. Introduction and Analysis of Optimal Routing Algorithm in Benes Networks[J]. Procedia Computer Science, 2014, 42(6): 313-319.
[2] [2] NGUYEN L V T, HUNTER D B. A photonic technique for microwave frequency measurement[J]. IEEE Photonics Technology Letters, 2006, 18(10): 1188-1190.
[3] [3] PAN S L, YAO J P. Instantaneous microwave frequency measurement using a photonic microwave filter pair[J]. IEEE photonics technology letters, 2010, 22(19): 1437-1439.
[4] [4] FU S N, TANG M, SHUM P. Instantaneous microwave frequency measurement using optical carrier suppression- based DC power monitoring[J]. Optics Express, 2011, 19(24): 24712-24717.
[5] [5] NGUYEN T A, CHAN E H W, MINASIAN R A, Instantaneous high-resolution multiple-frequency measurement system based on frequ-
ency to time mapping technique[J]. Optics letters, 2014, 39(8): 2419-2422.
[6] [6] TANEMURA T, TAKUSHIMA Y, KIKUCHI K, Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber[J]. Optics letters, 2002, 27(17): 1552-1554.
[7] [7] OKAWACHI Y, BIGELOW M S, SHARPING J E, et al. Tunable all-optical delays via Brillouin slow light in an optical fiber[J]. Physical Review Letters, 2005, 94(15): 153902-1-153902-4.
[8] [8] LONG Xin, ZOU Weiwen, CHEN Jianping. Broadband instantaneous frequency measurement based on stimulated Brillouin scattering[J]. Optics Express, 2017, 25(3): 2206-2214.
[9] [9] tion[J]. Optics Letters, 2019, 44(8): 2045-2048.
ZOU W W, LONG X, XIN G Y, et al. Brillouin instantaneous frequency measurement with an arbitrary response for potential real-time implementa-
[10] [10] BYRNES A, PANT R, LI E, et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering[J]. Optics Express, 2012, 20(17): 18836-18845.
[11] [11] LAER R V, BAZEN A, KUYKEN B, et al. Net on-chip Brillouin gain based on suspended silicon nanowires[J]. New Journal of Physics, 2015, 17: 115005-1-115005-10.
[12] [12] BELT M, HUFFMAN T, DAVENPORT M L, et al. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform[J]. Optics Letters, 2013, 38(22): 4825-4828.
[13] [13] JIANG H, MARPAUNG D, PAGANI M, et al. High-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 2016, 3(1): 30-34.
[14] [14] CHOUDHARY A, MORRISON B, ARYANFAR I, et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain[J]. Journal of Lightwave Technology, 2016, 35(4): 846-854.
[15] [15] WANG W Q, ZHANG W F, CHU S T, et al. Repetition Rate Multiplication Pulsed Laser Source Based on a Micro-ring Resonator[J]. ACS Photonics, 2017, 4(7): 1677-1683.
Get Citation
Copy Citation Text
LI Shujing, LI Xing, CHEN Jianping, ZOU Weiwen. Instantaneous frequency measurement of stimulated Brillouin scattering based on doped silica waveguides[J]. Optical Communication Technology, 2020, 44(8): 27
Category:
Received: Jan. 29, 2020
Accepted: --
Published Online: Oct. 27, 2020
The Author Email: ZOU Weiwen (wzou@sjtu.edu.cn)