Optical Technique, Volume. 49, Issue 5, 600(2023)
Comparison of premixed flame reconstruction algorithms based on tunable laser absorption spectroscopy
[3] [3] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues[J]. Progress in Energy and Combustion Science,2005,31(2):171-192.
[4] [4] Guttikunda S K, Jawahar P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India[J]. Atmospheric Environment,2014,92:449-460.
[5] [5] Bian H. Analysis on flue gas pollution of coal-fired boiler and its countermeasures[C]∥IOP Conference Series: Earth and Environmental Science. Xian, China : IOP Publishing,2020,450(1):012028.
[8] [8] Armstrong B H. Spectrum line profiles: the Voigt function[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1967,7(1):61-88.
[9] [9] Hinkley E D. High‐Resolution Infrared Spectroscopy with a Tunable Diode Laser[J]. Applied Physics Letters,1970,16(9):351-354.
[10] [10] Liu C, Xu L, Chen J, et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics Express,2015,23(17):22494-22511.
[11] [11] Arroyo M P, Hanson R K. Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser[J]. Applied optics,1993,32(30):6104-6116.
[12] [12] Xu Z Y, Liu W Q, Liu J G, et al. Temperature measurement method based on tunable semiconductor laser absorption spectrum[J]. Journal of Physics,2012,61(23):234204.
[13] [13] Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of theoretical Biology,1970,29(3):471-481.
[14] [14] Wang F, Cen K F, Li N, et al. Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy[J]. Measurement Science and Technology,2010,21(4):045301.
[16] [16] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolution neural networks[J]. Communication of the ACM,2017,60(6):84-90.
[17] [17] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [EB/OL].(2015-04-10)[2020-02-12].http∥arxiv.org/pdf/1409.1556.pdf.2014.
[18] [18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on computer Vision and Pattern Recognition(CVPR). Las Vegas:IEEE,2016:770-778.
[19] [19] Huang J, Liu H, Dai J, et al. Reconstruction for Limited-data Nonlinear69Tomographic absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2018,218:187-193.
[20] [20] Deng A, Huang J, Liu H, et al. Deep learning algorithms for temperature field reconstruction of nonlinear tomographic absorption spectroscopy[J]. Measurement:Sensors,2020,10:100024.
[21] [21] Webb S. Deep learning for biology[J]. Nature,2018,554(7693):555-557.
[22] [22] Parallel and Distributed Processing and Applications. 4th International Symposium, ISPA 2006, Sorrento, Italy, December 4-6, 2006, Proceedings[M]. Springer,2006.
[23] [23] Le Cun Y, Bengio Y, Hinton G. Deep learning[J]. Nature,2015,521(7553):436-444.
[24] [24] Goodfellow I, Bengio Y, Courville A. Deep learning[M]. MIT press,2016.
Get Citation
Copy Citation Text
SHAN Yanbo, ZHANG Lifang, ZHAO Guanjia1, MA Suxia. Comparison of premixed flame reconstruction algorithms based on tunable laser absorption spectroscopy[J]. Optical Technique, 2023, 49(5): 600