Acta Optica Sinica, Volume. 39, Issue 8, 0815005(2019)

An Improved Multi-Gate Feature Pyramid Network

Tong Zhao, Jieyu Liu*, and Qiang Shen
Author Affiliations
  • College of Missile Engineering, Rocket Force University of Engineering, Xi’an, Shaanxi 710025, China
  • show less
    Figures & Tables(12)
    FPN structure
    Improved FPN structure
    Memory and filter channel structure
    MSSD network structure
    Visual comparison of SSD algorithm and MSSD algorithm. (a)(c)(e)(g) SSD algorithm; (b)(d)(f)(h) MSSD algorithm
    • Table 1. Comparison between SSD network with FPN structure and MSSD network

      View table

      Table 1. Comparison between SSD network with FPN structure and MSSD network

      MethodFeature layersmAP /%FPS
      SSD[6]Conv4-Pool1177.546(Titan X)
      SSD+FPNConv4-Conv977.753.9
      MSSDConv4-Pool1178.827.1
      MSSDConv4-Conv979.031.7
    • Table 2. Comparison of improved effects of fusion structure

      View table

      Table 2. Comparison of improved effects of fusion structure

      Conv 1×1Feature fusion modeDeconv or bilinear interpolationmAP /%FPS
      SumDeconv78.931.2
      SumDeconv79.031.7
      SumBilinear interpolation78.540.1
      SumBilinear interpolation78.540.2
      MaxDeconv78.236.4
      MaxBilinear interpolation76.642.2
    • Table 3. Analysis of effectiveness of memory and filter channels

      View table

      Table 3. Analysis of effectiveness of memory and filter channels

      NumberForget gateInput gateOutput gatemAP /%
      1/
      275.2
      3/
      478.6
      5/
      677.9
      779
    • Table 4. Performance comparison of different basic networks

      View table

      Table 4. Performance comparison of different basic networks

      MethodNetworkmAP /%FPS
      SSD[11]ResNet10177.118.9(Titan X)
      SSD+FPNResNet10178.739.1
      MSSDResNet10179.323.7
      MSSDVGG1679.031.7
    • Table 5. Accuracy comparison of various advanced deep learning algorithms on VOC2007 dataset

      View table

      Table 5. Accuracy comparison of various advanced deep learning algorithms on VOC2007 dataset

      MethodNetworkmAP /%
      AeroBikeBirdBoatBottleBusCarCatChairCowTableDogHorseMbikePersonPlantSheepSofaTrainTvAverage
      Faster[5]VGG1676.579.070.965.552.183.184.786.452.081.965.784.884.677.576.738.873.673.983.072.673.2
      ION[23]VGG1679.283.177.665.654.985.485.187.054.480.673.885.382.282.274.447.175.872.784.280.475.6
      Faster[18]ResNet10179.880.776.268.355.985.185.389.856.787.869.488.388.980.978.441.778.679.885.372.076.4
      MR-CNN[24]VGG1680.384.178.570.868.588.085.987.860.385.273.787.286.585.076.448.576.375.585.081.078.2
      R-FCN[22]ResNet10179.987.281.572.069.886.888.589.867.088.174.589.890.679.981.253.781.881.585.979.980.5
      SSD300[6]VGG1679.583.976.069.650.587.085.788.160.381.577.086.187.583.9779.452.377.979.587.676.877.5
      SSD512[6]VGG1684.885.181.573.057.887.888.387.463.585.473.286.286.783.982.555.681.779.086.680.079.5
      DSSD321[11]ResNet10181.984.980.568.453.985.686.288.961.183.578.786.788.786.779.751.778.080.987.279.478.6
      DSSD513[11]ResNet10186.686.282.674.962.589.088.788.865.287.078.788.289.087.583.751.186.381.685.783.781.5
      MDSSD300[25]VGG1686.587.678.970.655.086.987.088.158.584.873.484.889.288.178.052.378.674.586.880.778.6
      MDSSD512[25]VGG1688.888.783.273.758.388.289.387.462.485.175.184.789.788.383.256.784.077.483.977.680.3
      YOLOV3[8]Darknet5385.585.575.670.066.587.687.789.464.383.573.685.986.986.283.356.275.378.086.477.879.2
      MSSD300ResNet10181.287.278.772.753.486.485.689.163.184.580.087.588.984.878.854.580.983.287.177.479.3
      MSSD300VGG1681.685.878.074.055.386.286.588.264.685.976.985.487.785.279.551.178.880.887.978.679.0
      MSSD500VGG1687.687.283.775.557.886.788.489.566.384.678.986.888.186.483.358.081.481.088.478.181.0
    • Table 6. Comparison of test results of various improved algorithms based on SSD

      View table

      Table 6. Comparison of test results of various improved algorithms based on SSD

      MethodNetworkFPSGPU#proposalsInput size /(pixel×pixel)mAP /%
      SSD300[6]VGG1646Titan X8732300×30077.2
      SSD512[6]VGG1619Titan X24564512×51278.5
      MDSSD300[25]VGG1638.51080Ti44530300×30078.6
      MDSSD512[25]VGG1617.31080Ti-512×51280.3
      DSSD321[11]ResNet1019.5Titan X17088321×32178.6
      DSSD513[11]ResNet1015.5Titan X43688513×51381.5
      RSSD300[14]VGG1635Titan X8732300×30078.5
      RSSD512[14]VGG1616.6Titan X24564512×51280.8
      MSSD300ResNet10123.71080Ti8728300×30079.3
      MSSD300VGG1631.71080Ti8732300×30079.0
      MSSD512VGG1617.31080Ti24564512×51281.0
    • Table 7. Detection accuracy of small targets by SSD algorithm and MSSD algorithm

      View table

      Table 7. Detection accuracy of small targets by SSD algorithm and MSSD algorithm

      MethodmAP /%
      SSD[6]55.4
      MSSD56.3
    Tools

    Get Citation

    Copy Citation Text

    Tong Zhao, Jieyu Liu, Qiang Shen. An Improved Multi-Gate Feature Pyramid Network[J]. Acta Optica Sinica, 2019, 39(8): 0815005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 13, 2019

    Accepted: Apr. 22, 2019

    Published Online: Aug. 7, 2019

    The Author Email: Jieyu Liu (601080018@qq.com)

    DOI:10.3788/AOS201939.0815005

    Topics