Infrared Technology, Volume. 46, Issue 9, 994(2024)

Improved YOLOv5-based Underwater Infrared Garbage Detection Algorithm

Yongqi GAO and Zhixiang YUAN*
Author Affiliations
  • School of Computer Science and Technology, Anhui University of Technology, Maanshan 243032, China
  • show less
    References(26)

    [1] [1] Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2001, 1: I-I.

    [2] [2] Bazeilles, Quidui, Jaulinl. Identification of underwater man-made object using a colour criterion[J]. Proceedings of the Insitute of Acoustics, 2007, 29(6): 25-52.

    [3] [3] LI C Y, GUO J C, CONG R M, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664-5677.

    [4] [4] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.

    [5] [5] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.

    [6] [6] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.

    [7] [7] Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.

    [8] [8] LIU W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//Computer Vision–ECCV, 2016: 21-37.

    [11] [11] JIANG H, Learned Miller E. Face detection with the faster R-CNN[C]//12th IEEE International Conference on Automatic Face & Gesture Recognition, 2017: 650-657.

    [12] [12] CAI Z, Vasconcelos N. Cascade R-CNN: High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1483-1498.

    [13] [13] ZHOU X, WANG D, Krhenbhl P. Objects as points[J]. arXiv preprint arXiv:1904.07850, 2019.

    [16] [16] YU W, ZHOU P, YAN S, et al. Inceptionnext: When inception meets convnext[J]. arXiv preprint arXiv:2303.16900, 2023.

    [17] [17] Lee Y, Park J. Centermask: Real-time anchor-free instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13906-13915.

    [18] [18] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.

    [19] [19] WANG R, Shivanna R, CHENG D, et al. DCN v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems[C]//Proceedings of the Web Conference, 2021: 1785-1797.

    [20] [20] WANG J, CHEN K, XU R, et al. Carafe: Content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3007-3016.

    [21] [21] DAI X, CHEN Y, XIAO B, et al. Dynamic head: Unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7373-7382.

    [22] [22] Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.

    [23] [23] Fulton M, HONG J, Islam M J, et al. Robotic detection of marine litter using deep visual detection models[C]//International Conference on Robotics and Automation (ICRA). IEEE, 2019: 5752-5758.

    [24] [24] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.

    [25] [25] LIU Y, SHAO Z, Hoffmann N. Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv preprint arXiv: 2112.05561, 2021.

    [26] [26] ZHU L, WANG X, KE Z, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.

    [27] [27] LI X, HU X, YANG J. Spatial group-wise enhance: Improving semantic feature learning in convolutional networks[J]. arXiv preprint arXiv: 1905.09646, 2019.

    [28] [28] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.

    [29] [29] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression[J]. arXiv preprint arXiv: 2205.12740, 2022.

    [30] [30] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv preprint arXiv: t2301.10051, 2023.

    Tools

    Get Citation

    Copy Citation Text

    GAO Yongqi, YUAN Zhixiang. Improved YOLOv5-based Underwater Infrared Garbage Detection Algorithm[J]. Infrared Technology, 2024, 46(9): 994

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 27, 2023

    Accepted: Jan. 21, 2025

    Published Online: Jan. 21, 2025

    The Author Email: Zhixiang YUAN (zxyuan@ahut.edu.cn)

    DOI:

    Topics