Laser & Optoelectronics Progress, Volume. 54, Issue 10, 100004(2017)

Development and Key Technologies of Synthetic Aperture Ladar Imaging

Lü Yakun* and Wu Yanhong
Author Affiliations
  • [in Chinese]
  • show less
    References(75)

    [3] [3] Lewis T S, Hutchins H S. A synthetic aperture at 10.6 microns[C]. Proceedings of the IEEE, 1970, 58(10): 1781-1782.

    [4] [4] Aleksoff C C, Accetta J S, Peterson L M, et al. Synthetic aperture imaging with a pulsed CO2 TEA laser[C]. Technical Symposium Southeast International Society for Optics and Photonics, 1987: 29-41.

    [5] [5] Kyle T G. High resolution laser imaging system[J]. Applied Optics, 1989, 28(13): 2651-2656.

    [6] [6] Strauss C E M. Synthetic-array heterodyne detection: a single-element detector acts as an array[J]. Optics Letters, 1994, 19(20): 1609-1611.

    [7] [7] Green J T J, Marcus S, Colella B D. Synthetic-aperture-radar imaging with a solid-state laser[J]. Applied Optics, 1995, 34(30): 6941-6949.

    [8] [8] Yoshikado S, Aruga T. Short-range verification experiment of a trial one-dimensional synthetic aperture infrared laser radar operated in the 10 μm band[J]. Applied Optics, 2000, 39(9): 1421-1425.

    [9] [9] Lucke R L, Richard L J, Bashkansky M, et al. Synthetic aperture ladar (SAL): Fundamental theory, design equation for a satellite system, and laboratory demonstration[R]. Naval Research Laboratory, 2002.

    [10] [10] Bashkansky M, Lucke R L, Funk E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 2002, 27(22): 1983-1985.

    [11] [11] Bashkansky M, Lucke R L, Funk E E, et al. Synthetic aperture imaging at 1.5 μ: laboratory demonstration and potential application to planet surface studies[C]. Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2002: 48-56.

    [12] [12] Beck S M, Buck J R, Buell W F, et al. Synthetic-aperture imaging laser radar: Laboratory demonstration and signal processing[J]. Applied Optics, 2005, 44(35): 7621-7629.

    [13] [13] Ricklin J, Dierking M, Fuhrer S, et al. Synthetic aperture ladar for tactical imaging (SALTI) flight test results and path forward[C]. Proceedings of the the 14th Coherent Laser Radar Conference, Colorado, 2007: 8-13.

    [14] [14] Krause B, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration[J]. 2011 Conference on Laser and Electro-Optics, 2011: PDPB7.

    [15] [15] Stephen Crouch, Zeb W Barber. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 2012, 20(22): 24237-24246.

    [16] [16] Turbide S, Marchese L, Terroux M, et al. An all-optronic synthetic aperture lidar[C]. SPIE, 2012, 8542: 854213.

    [17] [17] Turbide S, Marchese L, Terroux M, et al. Investigation of synthetic aperture ladar for land surveillance applications[C]. SPIE, 2013, 8897: 889709.

    [18] [18] Turbide S, Marchese L, Terroux M, et al. Synthetic aperture ladar concept for infrastructure monitoring[C]. SPIE, 2014, 9250: 92500B.

    [19] [19] Turbide S, Marchese L, Bergeron A, et al. Synthetic aperture ladar based on a MOPAW laser[C]. SPIE, 2016,10005: 1000502.

    [20] [20] Barber Z W, Dahl J R. Synthetic aperture ladar imaging demonstrations and information at very low return levels[J]. Applied Optics, 2014, 53(24): 5531-5537.

    [21] [21] Crouch S, Barber Z W. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 2012, 20(22): 24237-24246.

    [22] [22] Trahan R, Nemati B, Zhou H, et al. Low-CNR inverse synthetic aperture ladar imaging demonstration with atmospheric turbulence[C]. SPIE, 2016, 9846: 98460E.

    [23] [23] Zhou Zhaoping. Synthetie aperture ladar[J]. Infrared and Laser Engineering, 1990(2): 49-52.

    [25] [25] Guo Liang, Xing Mengdao, Zeng Xiaodong, et al. Inverse synthetic aperture lidar imaging of indoor real data[J]. Infrared and Laser Engineering, 2011, 40(4): 637-642.

    [26] [26] Guo Liang, Zeng Xiaodong, Xing Mengdao, et al. Study of synthetic aperture lidar imaging with lower pulse repetition frequency[J]. Journal of Optoelectronics Laser, 2011, 22(5): 772-777.

    [27] [27] Liu L R. Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations[J]. Applied Optics, 2013, 52(4): 579-599.

    [28] [28] Luan Z, Sun J, Zhou Y, et al. Down-looking synthetic aperture imaging ladar demonstrator and its experiments over 1.2 km outdoor[J]. Chinese Optics Letters, 2014, 12(11): 111101.

    [29] [29] Liu Liren, Zhou Yu, Zhi Yanan, et al. A large-aperture synthetic aperture imaging ladar demonstrator and its verification in laboratory space[J]. Acta Optica Sinica, 2011, 31(9): 0900112.

    [30] [30] Liu Liren. Principle of down-looking synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2012, 32(9): 0928002.

    [31] [31] Liu Liren. Principle of self-interferometric synthetic aperture ladar for 3D imaging[J]. Acta Optica Sinica, 2014, 34(5): 0528001.

    [32] [32] Liu Liren. A new way to high-resolution remote sensing: Synthetic aperture imaging ladar[J]. Science, 2014, 66(6): 25-29.

    [34] [34] Xu Q, Sun Z, Sun J, et al. Speckle reduction of synthetic aperture imaging ladar based on wavelength characteristics[J]. Chinese Optics Letters, 2014, 12(8): 080301.

    [36] [36] Lu W, Lu Z, Sun Z, et al. A demonstrator of all-optronic multifunctional down-looking synthetic aperture LADAR[C]. SPIE, 2015, 9617: 96170O.

    [37] [37] Lu Z Y, Zhang N, Sun J, et al. Laboratory demonstration of static-mode down-looking synthetic aperture imaging ladar[J]. Chinese Optics Letters, 2015, 13(4): 042801.

    [38] [38] Zhang N , Lu Z Y, Sun J, et al. Laboratory demonstration of spotlight-mode down-looking synthetic aperture imaging ladar[J]. Chinese Optics Letters, 2015, 13(9): 091001.

    [39] [39] Zhang Ning, Lu Zhiyong, Sun Jianfeng. Research on the signal-to-noise ratio in sliding spotlight mode down-looking synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2016, 36(8): 0828001.

    [40] [40] Zhao Z L, Wu J, Su Y Y, et al. Three-dimensional imaging interferometric synthetic aperture ladar[J]. Chinese Optics Letters, 2014, 12(9): 091101.

    [41] [41] Wu J, Li F F, Zhao Z L, et al. Demonstration of strip map mode synthetic aperture ladar with PGA-independent high resolution images[J]. Infrared and Laser Engineering, 2014, 43(11): 3559-3564.

    [43] [43] Wang N, Wang R, Li G, et al. Experiment of inverse synthetic aperture Ladar at 1.1 km[C]. SPIE, 2016, 10155: 101551G.

    [44] [44] Lu Zhiyong, Zhou Yu, Sun Jianfeng, et al. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing[J]. Chinese J Lasers, 2017, 44(1): 0110001.

    [45] [45] Li G Z, Wang R, Song Z Q, et al. Linear frequency-modulated continuous-wave ladar system for synthetic aperture imaging[J]. Applied Optics, 2017, 56(12): 3257-3262.

    [46] [46] Huang Yuxiang, Song Sheng, Xu Weiming, et al. Real-time inverse synthetic aperture ladar system based on continuous m-sequence phase modulation method[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072801.

    [47] [47] Tang Y, Qin B, Yan Y, et al. Multiple-input multiple-output synthetic aperture ladar system for wide-range swath with high azimuth resolution[J]. Applied Optics, 2016, 55(6): 1401-1405.

    [48] [48] Du Jianbo, Li Daojing, Ma Meng. Performance analysis and image processing of phase-modulated signal on airborne synthetic aperture ladar[J]. Jonrnal of Radars, 2014, 3(1): 111-118.

    [49] [49] Zhao Zhilong, Su Yuanyuan, Wu Jin. Synthetic aperture radar imaging via synthetic Frequency stepped linearly chirping signal[J]. High Power Laser and Particle Beams, 2015, 27(5): 21-26.

    [51] [51] Li Xiang. Research on optical heterodyne detection in inverse synthetic aperture Lidar[D]. Changchun: Changchun University of Science and Technology, 2014: 12-26.

    [52] [52] Liu Xu, Chen Jianwen, Lu Changyong, et al. Developing technologies and key inverse synthetic aperture problems of lidar[J]. Infrared and Laser Engineering, 2009, 38(4): 642-649.

    [53] [53] Hua Z, Li H, Gu Y. Atmospheric turbulence phase compensation in synthetic aperture LADAR data processing[C]. SPIE, 2007, 6787: 678724.

    [54] [54] Lu Tianan, Li Hongping. Phase error compensation in airborne synthetic aperture lidar data processing[J]. Acta Optica Sinica, 2015, 35(8): 0801002.

    [55] [55] Dang Wenjia, Zeng Xiaodong, Cao Changqing, et al. Simulation of the rough target′s signal in synthetic aperture ladar[J]. Acta Photonica Sinica, 2015, 44(3): 0304001.

    [56] [56] Dang Wenjia, Zeng Xiaodong, Feng Zhejun. Decoherence effect of target roughness in synthetic aperture ladar[J]. Acta Physica Sinica, 2013, 62(2): 024204.

    [58] [58] Zang Bo. Synthetic aperture imaging ladar imaging algorithm[D]. Xi′an: Xidian University, 2011: 40-64.

    [59] [59] Li Xiaozhen. Study on system design and algorithm of airborne synthetic aperture ladar[D]. Xi′an: Xidian University, 2015: 49-54.

    [60] [60] He Jin, Zhang Qun, Yang Xiaoyou, et al. Imaging algorithm for inverse synthetic aperture imaging ladar[J]. Infrared and Laser Engineering, 2012, 41(4): 1094-1100.

    [61] [61] He Jin, Zhang Qun, Yang Xiaoyou. SAL imaging algorithm based on compressed sensing theory[J]. Journal of Astronautics, 2011, 32(11): 2395-2402.

    [62] [62] Yang X Y, Chi L, Zhang Q, et al. Analysis of inner-pulse Doppler effect for the echoes of inverse synthetic aperture ladar[C]. IEEE International Conference on Signal Processing, 2010: 2295-2298.

    [64] [64] Ruan Hang, Wu Yanhong, Ye Wei. Inverse synthetic aperture ladar imaging algorithm for uniform motion targets[J]. Infrared and Laser Engineering, 2014, 43(4): 1124-1129.

    [65] [65] Ruan H, Wu Y, Jia X, et al. Novel ISAR imaging algorithm for maneuvering targets based on a modified keystone transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 128-132.

    [66] [66] Hu Yihua. Laser imaging technology for space target precise reconnaissance[J]. National Defensse Scence & Technology, 2016, 37(1): 30-36.

    [67] [67] Ding Jian, Li Lei. Research on imaging avian using ISAIL[J]. Laser Journal, 2015, 36(2): 60-62.

    [69] [69] Hong Guanglie, Guo Liang. Analysis of effects of line vibration on imaging quality of synthetic aperture ladar[J]. Acta Optica Sinica, 2012, 32(4): 0428001.

    [71] [71] Ma Meng, Li Daojing, Du Jianbo. Imaging of airborne synthetic aperture ladar under platform vibration condition[J]. Journal of Radars, 2014, 3(5): 591-602.

    [72] [72] Zhang Hongyi, Li Fei, Xu Weiming. Research on the phase error compensation in synthetic aperture ladar by using optimization algorithm[J]. Acta Electronica Sinica, 2016, 44(9): 2100-2105.

    [73] [73] Du Jianbo, Li Daojing, Ma Meng. Vibration estimation and imaging of airborne synthetic aperture ladar based on interferometry processing[J]. Chinese J Lasers, 2016, 43(9): 0910003.

    [75] [75] Li Daojing, Du Jianbo, Ma Meng, et al. System analysis of space borne synthetic aperture ladar[J]. Infrared and Laser Engineering, 2016, 45(11): 269-276.

    CLP Journals

    [1] Tian He, Mao Hongxia, Liu Zheng, Zeng Zheng. Airborne ladar sparse imaging on targets with micro-motions based on inverse synthetic aperture technique[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200190

    [2] Tian He, Mao Hongxia, Liu Zheng, Zeng Zheng. Airborne ladar sparse imaging on targets with micro-motions based on inverse synthetic aperture technique[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200190

    Tools

    Get Citation

    Copy Citation Text

    Lü Yakun, Wu Yanhong. Development and Key Technologies of Synthetic Aperture Ladar Imaging[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Apr. 28, 2017

    Accepted: --

    Published Online: Oct. 9, 2017

    The Author Email: Lü Yakun (lykc123@sina.com)

    DOI:10.3788/lop54.100004

    Topics