Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1200(2024)
Relaxor Antiferroelectric Phase and Optimized Energy Storage Properties of NaNbO3-Based Lead-Free Ceramics
[1] [1] HAO X H. A review on the dielectric materials for high energy-storage application[J]. J Adv Dielect, 2013, 3(1): 1330001.
[2] [2] PALNEEDI H, PEDDIGARI M, HWANG G T, et al. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook[J]. Adv Funct Materials, 2018, 28(42): 1803665.
[3] [3] Prateek, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects[J]. Chem Rev, 2016, 116(7): 4260-4317.
[4] [4] HAO X H, ZHAI J W, KONG L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Prog Mater Sci, 2014, 63: 1-57.
[5] [5] LI D X, ZENG X J, LI Z P, et al. Progress and perspectives in dielectric energy storage ceramics[J]. J Adv Ceram, 2021, 10(4): 675-703.
[6] [6] VEERAPANDIYAN V, BENES F, GINDEL T, et al. Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review[J]. Materials, 2020, 13(24): 5742.
[7] [7] LI L S, FAN P Y, WANG M Q, et al. Review of lead-free Bi-based dielectric ceramics for energy-storage applications[J]. J Phys D: Appl Phys, 2021, 54(29): 293001.
[8] [8] LUO N N, HAN K, ZHUO F P, et al. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics[J]. J Mater Chem C, 2019, 7(17): 4999-5008.
[9] [9] LIN Y, LI D, ZHANG M, et al. Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale[J]. ACS Appl Mater Interfaces, 2019, 11(40): 36824-36830.
[10] [10] ZHAO J H, HU T F, FU Z Q, et al. Delayed polarization saturation induced superior energy storage capability of BiFeO3-based ceramics via introduction of non-isovalent ions[J]. Small, 2023, 19(14): e2206840.
[11] [11] WANG M S, XIE A W, FU J A, et al. Energy storage properties under moderate electric fields in BiFeO3-based lead-free relaxor ferroelectric ceramics[J]. Chem Eng J, 2022, 440: 135789.
[12] [12] CHEN L, DENG S Q, LIU H, et al. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design[J]. Nat Commun, 2022, 13: 3089.
[13] [13] XIE A W, FU J, ZUO R Z, et al. Supercritical relaxor nanograined ferroelectrics for ultrahigh-energy-storage capacitors[J]. Adv Mater, 2022, 34(34): e2204356.
[14] [14] PAN W G, CAO M H, JAN A, et al. High breakdown strength and energy storage performance in (Nb, Zn) modified SrTiO3 ceramics via synergy manipulation[J]. J Mater Chem C, 2020, 8(6): 2019-2027.
[15] [15] HAN K, LUO N N, MAO S F, et al. Realizing high low-electric-field energy storage performance in AgNbO3 ceramics by introducing relaxor behaviour[J]. J Materiomics, 2019, 5(4): 597-605.
[16] [16] HU Q Y, TIAN Y, ZHU Q S, et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction[J]. Nano Energy, 2020, 67: 104264.
[17] [17] WU J Y, MAHAJAN A, RIEKEHR L, et al. Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage[J]. Nano Energy, 2018, 50: 723-732.
[18] [18] ZHANG M H, FULANOVI? L, ZHAO C H, et al. Review on field-induced phase transitions in lead-free NaNbO3-based antiferroelectric perovskite oxides for energy storage[J]. J Materiomics, 2023, 9(1): 1-18.
[19] [19] SHIMIZU H, GUO H Z, REYES-LILLO S E, et al. Lead-free antiferroelectric: xCaZrO3-(1?x)NaNbO3 system (0≤x≤0.10)[J]. Dalton Trans, 2015, 44(23): 10763-10772.
[20] [20] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy[J]. J Mater Chem A, 2018, 6(37): 17896-17904.
[21] [21] FAN Y Z, ZHOU Z Y, LIANG R H, et al. Designing novel lead-free NaNbO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications via relaxor strategy[J]. J Eur Ceram Soc, 2019, 39(15): 4770-4777.
[22] [22] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability[J]. ACS Sustainable Chem Eng, 2018, 6(10): 12755-12765.
[23] [23] SHI J P, CHEN X L, SUN C C, et al. Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics[J]. Ceram Int, 2020, 46(16): 25731-25737.
[24] [24] SHI R K, PU Y, WANG W, et al. A novel lead-free NaNbO3-Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability[J]. J Alloys Compd, 2020, 815: 152356.
[25] [25] YANG L T, KONG X, CHENG Z X, et al. Enhanced energy storage performance of sodium niobate-based relaxor dielectrics by a ramp-to-spike sintering profile[J]. ACS Appl Mater Interfaces, 2020, 12(29): 32834-32841.
[26] [26] XIE A W, ZUO R, QIAO Z, et al. NaNbO3‐(Bi0.5Li0.5)TiO3 lead‐free relaxor ferroelectric capacitors with superior energy‐storage performances via multiple synergistic design[J]. Adv Energy Materials, 2021, 11(28): 2101378.
[27] [27] QI H, ZUO R Z, XIE A W, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains[J]. Adv Funct Materials, 2019, 29(35): 1903877.
[28] [28] JIANG J E, LI X J, LI L, et al. Novel lead-free NaNbO3-based relaxor antiferroelectric ceramics with ultrahigh energy storage density and high efficiency[J]. J Materiomics, 2022, 8(2): 295-301.
[29] [29] PAN T Z, ZHANG J, GUAN Z N, et al. Enhanced energy density and efficiency in lead-free sodium niobate-based relaxor antiferroelectric ceramics for electrostatic energy storage application[J]. Adv Elect Materials, 2022, 8(12): 2200793.
[30] [30] WANG X J, WANG X Z, HUAN Y, et al. A combined optimization strategy for improvement of comprehensive energy storage performance in sodium niobate-based antiferroelectric ceramics[J]. ACS Appl Mater Interfaces, 2022, 14(7): 9330-9339.
[31] [31] LIU Z Y, LU J S, MAO Y Q, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases[J]. J Eur Ceram Soc, 2018, 38(15): 4939-4945.
[32] [32] YE J M, WANG G S, ZHOU M X, et al. Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications[J]. J Mater Chem C, 2019, 7(19): 5639-5645.
[33] [33] GUO H Z, SHIMIZU H, MIZUNO Y, et al. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution[J]. J Appl Phys, 2015, 117(21): 214103.
[34] [34] GAO L S, GUO H Z, ZHANG S J, et al. A perovskite lead-free antiferroelectric xCaHfO3-(1?x) NaNbO3 with induced double hysteresis loops at room temperature[J]. J Appl Phys, 2016, 120(20): 204102.
[35] [35] LIU J K, LI P, LI C Y, et al. Synergy of a stabilized antiferroelectric phase and domain engineering boosting the energy storage performance of NaNbO3-based relaxor antiferroelectric ceramics[J]. ACS Appl Mater Interfaces, 2022, 14(15): 17662-17673.
[36] [36] FAN P Y, ZHANG S T, XU J W, et al. Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics[J]. J Mater Chem C, 2020, 8(17): 5681-5691.
[37] [37] CHEN J, QI H, ZUO R Z. Realizing stable relaxor antiferroelectric and superior energy storage properties in (Na1?x/2Lax/2)(Nb1?xTix)O3 lead-free ceramics through A/B-site complex substitution[J]. ACS Appl Mater Interfaces, 2020, 12(29): 32871-32879.
[38] [38] WU L W, CAI Z M, ZHU C Q, et al. Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: phase-field simulation and experimental realization[J]. Appl Phys Lett, 2020, 117(21): 212902.
[39] [39] GERSON R, MARSHALL T C. Dielectric breakdown of porous ceramics[J]. J Appl Phys, 1959, 30(11): 1650-1653.
[40] [40] CAI Z M, FENG P Z, ZHU C Q, et al. Dielectric breakdown behavior of ferroelectric ceramics: the role of pores[J]. J Eur Ceram Soc, 2021, 41(4): 2533-2538.
Get Citation
Copy Citation Text
YANG Weiwei, ZENG Huarong, ZHAI Jiwei, ZHAO Kunyu, LI Guorong. Relaxor Antiferroelectric Phase and Optimized Energy Storage Properties of NaNbO3-Based Lead-Free Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1200
Category:
Received: Sep. 21, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: ZENG Huarong (huarongzeng@mail.sic.ac.cn)