Laser & Optoelectronics Progress, Volume. 58, Issue 24, 2415007(2021)

Surface Defect Detection Algorithm of Aluminum Profile Based on AM-YOLOv3 Model

Lianshan Sun1, Jingxue Wei1、*, Dengming Zhu2, and Min Shi3
Author Affiliations
  • 1School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
  • 2Foresight Research Laboratory, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
  • 3School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
  • show less
    Figures & Tables(15)
    Overall network structure of YOLOv3
    Overall network structure of AM-YOLOv3
    Structural diagram of attention guidance module
    Schematic diagram of twin-towers structure
    Five types of defects in aluminum profile dataset. (a) Non-conduction; (b) scratch; (c) wrinkle; (d) jet; (e) spot
    Data enhancement results. (a) Original image; (b) enhanced images
    MAP of five types of defects
    mAP curve
    Defects detection effect. (a1)(a2) Non-conduction; (b1)(b2) scratch; (c1)(c2) wrinkle; (d1)(d2) jet; (e1)(e2) spot
    • Table 1. Clustering results of K-means algorithm

      View table

      Table 1. Clustering results of K-means algorithm

      SizeClustering parameter
      13×13(392, 33)(408, 91)(414, 182)
      26×26(224, 163)(353, 17)(365, 57)
      52×52(87, 90)(94, 30)(184, 44)
      104×104(9, 12)(21, 25)(30, 60)
      Precision71.14%
    • Table 2. Clustering results of K-medians algorithm

      View table

      Table 2. Clustering results of K-medians algorithm

      SizeClustering parameter
      13×13(416, 75)(416, 102)(416, 190)
      26×26(179, 44)(416, 17)(416, 39)
      52×52(58, 27)(94, 30)(113, 28)
      104×104(8, 11)(85, 70)(25, 46)
      Precision74.41%
    • Table 3. Comparison of number of defect images before and after expansion

      View table

      Table 3. Comparison of number of defect images before and after expansion

      ClassOriginal imageEnhanced image
      Non-conduction3752250
      Scratch1042080
      Wrinkle1512114
      Jet662046
      Spot1042080
      Total80010570
    • Table 4. Partial training parameters after modification

      View table

      Table 4. Partial training parameters after modification

      ParameterValue
      Epoch150
      Initial learning rate0.0010
      Learning rate when epoch is 500.0001
      Momentum0.9
    • Table 5. Comparison of ablation experimental results

      View table

      Table 5. Comparison of ablation experimental results

      AlgorithmK-mediansFour feature scalesFAGTwin-towers structureMmAP /%fFPS /(frame·s-1)
      YOLOv3××××92.7448.83
      Group A×××93.6656.33
      Group B××96.3150.28
      Group C×98.1747.85
      AM-YOLOv399.0543.94
    • Table 6. Performance of different algorithms

      View table

      Table 6. Performance of different algorithms

      AlgorithmBackboneAP of non-conductiondetection /%AP of scratchdetection /%AP of jet detection /%AP of wrinkle detection /%AP of spot detection /%MmAP /%fFPS /(frame·s-1)
      Faster R-CNN[8]VGG1687.4174.5679.9796.6522.2572.1717.21
      SSD[9]VGG1689.7979.8888.9698.9240.6279.6377.17
      YOLOv3[11]DarkNet-5393.9295.1898.5099.8076.3292.7448.83
      YOLOv3ResNet15294.8593.9798.6299.2675.8092.5027.37
      YOLOv4[12]CSPDarknet5395.2195.7998.9999.7689.9695.9445.29
      YOLOv5[13]CSPDarknet5396.8397.3499.9599.9893.5897.5342.37
      CenterNet[15]Resnet-10185.8768.3379.8999.1543.9375.4370.61
      shuzhilian ai[26]Resnet-10194.4881.8067.7398.3051.1278.6921.43
      AM-YOLOv3DarkNet-5398.1398.00100.0099.9699.1299.0543.94
    Tools

    Get Citation

    Copy Citation Text

    Lianshan Sun, Jingxue Wei, Dengming Zhu, Min Shi. Surface Defect Detection Algorithm of Aluminum Profile Based on AM-YOLOv3 Model[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2415007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 29, 2021

    Accepted: Jun. 2, 2021

    Published Online: Dec. 1, 2021

    The Author Email: Jingxue Wei (1779664651@qq.com)

    DOI:10.3788/LOP202158.2415007

    Topics