Spectroscopy and Spectral Analysis, Volume. 42, Issue 1, 292(2022)

Spectral Pre-Processing Based on Convolutional Neural Network

Qing-liang JIAO1、*, Ming LIU1、1; *;, Kun YU2、2;, Zi-long LIU2、2; 3;, Ling-qin KONG1、1;, Mei HUI1、1;, Li-quan DONG1、1;, and Yue-jin ZHAO1、1;
Author Affiliations
  • 11. Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 22. Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
  • show less
    Figures & Tables(7)
    The structure of proposed CNN
    The result of spectral denoising(a): RMSE; (b): GFC
    The result of baseline correction(a): RMSE; (b): GFC
    Effect of denoising and baseline correction(a): Noise and Ours; (b): DWT+[6], DWT+[8] and Ours; (c): SG+[6], SG+[8] and Ouss
    • Table 1. The result of denoising and baseline correction(RMSE\GFC)

      View table
      View in Article

      Table 1. The result of denoising and baseline correction(RMSE\GFC)

      SNR of noiseDWT+[6]DWT+[8]SG+[6]SG+[8]Ours
      00.981\6.3790.973\5.9630.577\1.1970.571\1.1830.146\1.011
      100.313\1.9610.308\1.9640.203\0.9760.219\0.9710.059\0.980
      200.099\1.0610.096\1.0590.068\0.9520.067\0.9500.020\0.988
      300.031\1.0120.030\1.0100.011\1.0010.011\1.0010.006\0.999
      400.010\1.0000.010\1.0000.007\0.9980.007\0.9990.002\0.999
    • Table 2. The result of spectrum peak detection

      View table
      View in Article

      Table 2. The result of spectrum peak detection

      标准TD[10]Ours
      位置强度位置强度位置强度位置强度
      130.586 730.586 730.586 730.586 7
      270.843 970.843 970.843 970.843 9
      3131.055 413.261.030 713.141.053 1131.055 4
      4150.875 5--14.690.919 615.020.870 5
      5190.762 3190.762 3190.762 3190.762 3
    • Table 3. RMSE of quantitative analysis

      View table
      View in Article

      Table 3. RMSE of quantitative analysis

      DenoisingDWTSG
      Baseline[6][8][6][8]Ours
      PeakTD[10]TD[10]TD[10]TD[10]
      Moisture0.1580.1480.1560.1470.1530.1320.1530.1360.119
      Oil0.7830.6300.7810.6330.7590.6160.7530.6110.414
    Tools

    Get Citation

    Copy Citation Text

    Qing-liang JIAO, Ming LIU, Kun YU, Zi-long LIU, Ling-qin KONG, Mei HUI, Li-quan DONG, Yue-jin ZHAO. Spectral Pre-Processing Based on Convolutional Neural Network[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 292

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 29, 2020

    Accepted: --

    Published Online: Mar. 31, 2022

    The Author Email: Qing-liang JIAO (jiaoql2006@126.com)

    DOI:10.3964/j.issn.1000-0593(2022)01-0292-06

    Topics