Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0628003(2025)

Fusion Multiscale Receptive Field and Multilevel Hybrid Transformer for Super-Resolution Reconstruction of Remote Sensing Images

Bo Li1, Lingyun Kong1、*, Mingwei Zhao1, and Xinyu Liu2、**
Author Affiliations
  • 1School of Electronics and Information, Xijing University, Xi'an 710123, Shaanxi , China
  • 2School of Intelligent Manufacturing, Huanghuai University, Zhumadian 463000, Henan , China
  • show less
    Figures & Tables(10)
    Generator network framework
    MSHT module structure
    Discriminator network framework
    4×reconstruction results
    Runtime of different algorithms on PatternNet, WHU-RS19, AID, and NWPU-RESISC45 datasets
    • Table 1. Comparison of average PSNR of different models on different datasets

      View table

      Table 1. Comparison of average PSNR of different models on different datasets

      DatasetScaleBicubicSRGANESRGANCAL_GANSAFMNSRFormerV2SRTrans GANProposed algorithm
      PatternNet×229.0136.9137.2937.1036.5837.5037.7637.99
      ×326.0332.5533.4533.1531.3233.6533.7634.11
      ×424.3430.1630.8730.5529.7431.1031.2331.67
      AID×229.4338.3738.7538.4537.2538.8939.4439.55
      ×326.8235.0235.6235.3833.7335.8036.3336.52
      ×423.3433.1833.6833.4331.9633.8334.3534.73
      WHU-RS19×228.5937.1537.6637.3536.5737.8938.7539.06
      ×324.5535.8436.4636.2033.8136.6037.8038.08
      ×422.9633.9434.4634.1531.6334.6535.7136.08
      NWPU-RESISC45×228.6138.3138.6738.4537.0438.7238.8138.74
      ×325.7335.5236.1035.6532.2836.3535.0737.15
      ×423.2532.0932.6232.4530.9832.8733.7334.86
      UCMERCED×229.1337.1437.5537.2536.9137.6837.9238.69
      ×324.8134.6135.2234.8034.3635.3834.9437.33
      ×422.1832.5532.8932.7032.5133.1532.2434.94
    • Table 2. Comparison of average SSIM of different models on different datasets

      View table

      Table 2. Comparison of average SSIM of different models on different datasets

      DatasetScaleBicubicSRGANESRGANCAL_GANSAFMNSRFormer V2

      SRTrans

      GAN

      Proposed algorithm
      PatternNet×20.8560.9600.9650.9620.9370.9680.9700.972
      ×30.7940.9060.9220.9180.8830.9280.9320.935
      ×40.7370.8480.8850.8810.8140.8920.8930.897
      AID×20.8120.9020.9930.9910.8920.9950.9960.998
      ×30.7620.9570.9600.9540.9170.9640.9640.967
      ×40.7130.9080.9280.9240.8740.9320.9350.936
      WHU-RS19×20.8010.9440.9420.9340.9200.9480.9510.954
      ×30.7420.8970.9020.8960.8610.9110.9170.922
      ×40.6890.9260.9680.9640.8980.9750.9790.988
      NWPU-RESISC45×20.7970.9160.9620.9530.8410.9660.9700.971
      ×30.7160.8990.9280.9220.8130.9340.9540.965
      ×40.6690.9460.9770.9720.8740.9810.9810.983
      UCMERCED×20.8130.9440.9530.9410.9140.9570.9630.969
      ×30.7360.8830.9220.9160.8430.9280.9300.932
      ×40.6210.9230.9730.9680.8710.9760.9770.979
    • Table 3. Comparison of average FSIM of different models on different datasets

      View table

      Table 3. Comparison of average FSIM of different models on different datasets

      DatasetScaleBicubicSRGANESRGANCAL_GANSAFMNSRFormer V2SRTrans GANProposed algorithm
      PatternNet×20.8610.9940.9960.9950.9880.9960.9970.997
      ×30.8520.990.9940.9920.9890.9950.9940.996
      ×40.8340.9810.9880.9850.9760.9910.9920.993
      AID×20.8240.9040.9100.9080.9890.9120.9420.986
      ×30.8140.9010.9040.9020.8960.9060.9020.903
      ×40.7980.8920.8970.8950.8870.8990.8960.899
      WHU-RS19×20.8320.9120.9170.9140.9070.9190.9130.915
      ×30.8220.9060.9100.9080.9020.9120.9120.913
      ×40.8060.8980.9050.9010.8940.9090.9070.909
      NWPU-RESISC45×20.8410.9210.9310.9260.9130.9350.9440.947
      ×30.8320.9140.9230.9190.9010.9260.9270.931
      ×40.8090.9060.9210.9170.8950.9290.9330.937
      UCMERCED×20.8270.9170.9400.9350.9030.9520.9610.974
      ×30.8040.9110.9330.9290.8910.9360.9360.938
      ×40.7960.9040.9280.9230.8740.9380.9400.942
    • Table 4. Results of generator network ablation experiment

      View table

      Table 4. Results of generator network ablation experiment

      Model settingPSNR /dBSSIM
      Generator network37.990.972
      Remove multi-scale feature extraction module33.520.791
      Remove dynamic feature fusion module34.830.835
      Remove MSHT module35.150.897
    • Table 5. Results of generator network ablation experiment

      View table

      Table 5. Results of generator network ablation experiment

      Model settingPSNR /dBSSIM
      Discriminator network37.990.972
      Remove multi-scale convolutional discriminator34.600.811
      Remove global transformer discriminator35.490.867
      Remove hierarchical feature discriminator36.220.883
    Tools

    Get Citation

    Copy Citation Text

    Bo Li, Lingyun Kong, Mingwei Zhao, Xinyu Liu. Fusion Multiscale Receptive Field and Multilevel Hybrid Transformer for Super-Resolution Reconstruction of Remote Sensing Images[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0628003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Dec. 23, 2024

    Accepted: Jan. 20, 2025

    Published Online: Mar. 10, 2025

    The Author Email: Lingyun Kong (konglingyun@xijing.edu.cn), Xinyu Liu (liuxinyu@huanghuai.edu.cn)

    DOI:10.3788/LOP242482

    CSTR:32186.14.LOP242482

    Topics