Chinese Journal of Lasers, Volume. 51, Issue 1, 0103001(2024)

Metasurfaces: Design Principles and Application Challenges (Invited)

Yaoguang Ma* and Yubin Gao
Author Affiliations
  • State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Intelligent Optics and Photonics Research Center, Jiaxing Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    References(181)

    [1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 10, 509-514(1968).

    [2] Cui T J, Smith D, Liu R P[M]. Metamaterials: theory, design, and applications(2009).

    [3] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 76, 4773-4776(1996).

    [4] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [5] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).

    [6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [7] Smith D R, Pendry J B. Homogenization of metamaterials by field averaging (invited paper)[J]. Journal of the Optical Society of America B, 23, 391-403(2006).

    [8] Smith D R, Vier D C, Koschny T et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 71, 036617(2005).

    [9] Liu R P, Cui T J, Huang D et al. Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory[J]. Physical Review E, 76, 026606(2007).

    [10] Leonhardt U. Optical conformal mapping[J]. Science, 312, 1777-1780(2006).

    [11] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [12] Liu R, Ji C, Mock J J et al. Broadband ground-plane cloak[J]. Science, 323, 366-369(2009).

    [13] Grbic A, Eleftheriades G V. Overcoming the diffraction limit with a planar left-handed transmission-line lens[J]. Physical Review Letters, 92, 117403(2004).

    [14] Ma S J, Yang B, Zhang S. Topological photonics in metamaterials[J]. Photonics Insights, 1, R02(2022).

    [15] Silva A, Monticone F, Castaldi G et al. Performing mathematical operations with metamaterials[J]. Science, 343, 160-163(2014).

    [16] Badloe T, Lee S, Rho J. Computation at the speed of light: metamaterials for all-optical calculations and neural networks[J]. Advanced Photonics, 4, 064002(2022).

    [17] Shen B, Wang P, Polson R et al. Ultra-high-efficiency metamaterial polarizer[J]. Optica, 1, 356-360(2014).

    [18] Zhang L, Ding J, Zheng H Y et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics[J]. Nature Communications, 9, 1481(2018).

    [19] Holloway C L, Kuester E F, Gordon J A et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 54, 10-35(2012).

    [20] Glybovski S B, Tretyakov S A, Belov P A et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 634, 1-72(2016).

    [21] Brener I, Liu S, Staude I et al[M]. Dielectric metamaterials: fundamentals, designs and applications(2020).

    [22] Camayd-Muñoz P, Ballew C, Roberts G et al. Multifunctional volumetric meta-optics for color and polarization image sensors[J]. Optica, 7, 280-283(2020).

    [23] Chen H, Lu W B, Liu Z G et al. Microwave programmable graphene metasurface[J]. ACS Photonics, 7, 1425-1435(2020).

    [24] Zhao X G, Schalch J, Zhang J D et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 5, 303-310(2018).

    [25] Li P N, Dolado I, Alfaro-Mozaz F J et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 359, 892-896(2018).

    [26] Khorasaninejad M, Shi Z, Zhu A Y et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 17, 1819-1824(2017).

    [27] Ossiander M, Meretska M L, Hampel H K et al. Extreme ultraviolet metalens by vacuum guiding[J]. Science, 380, 59-63(2023).

    [28] Fröch J E, Huang L C, Tanguy Q A A et al. Real time full-color imaging in a meta-optical fiber endoscope[J]. eLight, 3, 13(2023).

    [29] Ren H R, Fang X Y, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 15, 948-955(2020).

    [30] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).

    [31] Zhang Z M, Liu Y J, Wang Z et al. Folded digital meta-lenses for on-chip spectrometer[J]. Nano Letters, 23, 3459-3466(2023).

    [32] Ni Y B, Chen S, Wang Y J et al. Metasurface for structured light projection over 120° field of view[J]. Nano Letters, 20, 6719-6724(2020).

    [33] Yuan G H, Zheludev N I. Detecting nanometric displacements with optical ruler metrology[J]. Science, 364, 771-775(2019).

    [34] Li Z Y, Pestourie R, Park J S et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality[J]. Nature Communications, 13, 2409(2022).

    [35] Liu Z Y, Wang D Y, Gao H et al. Metasurface-enabled augmented reality display: a review[J]. Advanced Photonics, 5, 034001(2023).

    [36] Assouar B, Liang B, Wu Y et al. Acoustic metasurfaces[J]. Nature Reviews Materials, 3, 460-472(2018).

    [37] Zhou R Y, Wang C, Huang Y X et al. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures[J]. Biosensors and Bioelectronics, 188, 113336(2021).

    [38] Zheng P X, Dai Q, Li Z L et al. Metasurface-based key for computational imaging encryption[J]. Science Advances, 7, eabg0363(2021).

    [39] Divitt S, Zhu W, Zhang C et al. Ultrafast optical pulse shaping using dielectric metasurfaces[J]. Science, 364, 890-894(2019).

    [40] Anwar R, Mao L F, Ning H S. Frequency selective surfaces: a review[J]. Applied Sciences, 8, 1689(2018).

    [41] Johri M, Ahmed Y A, Bezboruah T. Photonic band gap materials: technology, applications and challenges[J]. Current Science, 92, 1361-1365(2007).

    [42] Zhang Y M[M]. Applied optics(2008).

    [43] Arbabi A, Horie Y, Ball A J et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 6, 7069(2015).

    [44] Paniagua-Domínguez R, Yu Y F, Khaidarov E et al. A metalens with a near-unity numerical aperture[J]. Nano Letters, 18, 2124-2132(2018).

    [45] Bao Y J, Wen L, Chen Q et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Science Advances, 7, eabh0365(2021).

    [46] Rubin N A, Zaidi A, Dorrah A H et al. Jones matrix holography with metasurfaces[J]. Science Advances, 7, eabg7488(2021).

    [47] Engelberg J, Levy U. The advantages of metalenses over diffractive lenses[J]. Nature Communications, 11, 1991(2020).

    [48] Engelberg J, Levy U. Achromatic flat lens performance limits[J]. Optica, 8, 834-845(2021).

    [49] Banerji S, Meem M, Majumder A et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 6, 805-810(2019).

    [50] Menon R, Sensale-Rodriguez B. Inconsistencies of metalens performance and comparison with conventional diffractive optics[J]. Nature Photonics, 17, 923-924(2023).

    [51] Sun S L, He Q, Hao J M et al. Electromagnetic metasurfaces: physics and applications[J]. Advances in Optics and Photonics, 11, 380-479(2019).

    [52] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [53] Hao J M, Yuan Y, Ran L X et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 99, 063908(2007).

    [54] Martín-Moreno L, García-Vidal F J, Lezec H J et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 86, 1114-1117(2001).

    [55] Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen[J]. Annalen Der Physik, 330, 377-445(1908).

    [56] Born M, Wolf E, Yang J S[M]. Principles of optics(2009).

    [57] Holloway C L, Kuester E F, Dienstfrey A. Characterizing metasurfaces/metafilms: the connection between surface susceptibilities and effective material properties[J]. IEEE Antennas and Wireless Propagation Letters, 10, 1507-1511(2011).

    [58] Holloway C L, Dienstfrey A, Kuester E F et al. A discussion on the interpretation and characterization of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials[J]. Metamaterials, 3, 100-112(2009).

    [59] Novotny L, Hecht B[M]. Principles of nano-optics(2012).

    [60] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [61] High A A, Devlin R C, Dibos A et al. Visible-frequency hyperbolic metasurface[J]. Nature, 522, 192-196(2015).

    [62] Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials[J]. Science, 331, 290-291(2011).

    [63] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012).

    [64] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [65] Kamali S M, Arbabi E, Arbabi A et al. A review of dielectric optical metasurfaces for wavefront control[J]. Nanophotonics, 7, 1041-1068(2018).

    [66] Liang H W, Lin Q L, Xie X S et al. Ultrahigh numerical aperture metalens at visible wavelengths[J]. Nano Letters, 18, 4460-4466(2018).

    [67] Yoon G, Kim K, Huh D et al. Single-step manufacturing of hierarchical dielectric metalens in the visible[J]. Nature Communications, 11, 2268(2020).

    [68] Chen B H, Wu P C, Su V C et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 17, 6345-6352(2017).

    [69] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [70] Wang L, Kruk S, Tang H Z et al. Grayscale transparent metasurface holograms[J]. Optica, 3, 1504-1505(2016).

    [71] Chen W T, Zhu A Y, Sisler J et al. Broadband achromatic metasurface-refractive optics[J]. Nano Letters, 18, 7801-7808(2018).

    [72] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [73] Shrestha S, Overvig A C, Lu M et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 7, 85(2018).

    [74] Zhang X H, Li X, Jin J J et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes[J]. Nanoscale, 10, 9304-9310(2018).

    [75] Khorasaninejad M, Capasso F. Metalenses: versatile multifunctional photonic components[J]. Science, 358, eaam8100(2017).

    [76] Presutti F, Monticone F. Focusing on bandwidth: achromatic metalens limits[J]. Optica, 7, 624-631(2020).

    [77] Chen J, Hu S S, Zhu S N et al. Metamaterials: from fundamental physics to intelligent design[J]. Interdisciplinary Materials, 2, 5-29(2023).

    [78] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [79] Yin X, Zhu H, Guo H J et al. Hyperbolic metamaterial devices for wavefront manipulation[J]. Laser & Photonics Reviews, 13, 1800081(2019).

    [80] Li J H, Hu G W, Shi L N et al. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials[J]. Nature Communications, 12, 6425(2021).

    [81] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 44, 247-262(1956).

    [82] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 392, 45-57(1984).

    [83] Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 27, 1141-1143(2002).

    [84] Guo Y H, Pu M B, Zhang F et al. Classical and generalized geometric phase in electromagnetic metasurfaces[J]. Photonics Insights, 1, R03(2022).

    [85] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 58, 594201(2015).

    [86] Jing X L, Zhao R Z, Li X et al. Single-shot 3D imaging with point cloud projection based on metadevice[J]. Nature Communications, 13, 7842(2022).

    [87] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 1, 1600064(2017).

    [88] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [89] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [90] Fan Q B, Liu M Z, Zhang C et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 125, 267402(2020).

    [91] Saleh B E A, Teich M C[M]. Fundamentals of photonics(2019).

    [92] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [93] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [94] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).

    [95] Li X T, Cen Z F, Fan S F[M]. Geometrical optics, aberrations and optical design(2007).

    [96] Kuznetsov A I, Miroshnichenko A E, Brongersma M L et al. Optically resonant dielectric nanostructures[J]. Science, 354, aag2472(2016).

    [97] Koshelev K, Kivshar Y. Dielectric resonant metaphotonics[J]. ACS Photonics, 8, 102-112(2021).

    [98] Lepeshov S, Kivshar Y. Near-field coupling effects in Mie-resonant photonic structures and all-dielectric metasurfaces[J]. ACS Photonics, 5, 2888-2894(2018).

    [99] Gao Y B, Chen Q K, Pian S J et al. Inverse design in flat optics[J]. Photonics and Nanostructures-Fundamentals and Applications, 52, 101074(2022).

    [100] Chung H, Miller O D. High-NA achromatic metalenses by inverse design[J]. Optics Express, 28, 6945-6965(2020).

    [101] So S, Badloe T, Noh J et al. Deep learning enabled inverse design in nanophotonics[J]. Nanophotonics, 9, 1041-1057(2020).

    [102] Wang Q Z, Makarenko M, Lopez A B et al. Advancing statistical learning and artificial intelligence in nanophotonics inverse design[J]. Nanophotonics, 11, 2483-2505(2022).

    [103] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [104] Zhao R Z, Sain B, Wei Q S et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95(2018).

    [105] Xiong B, Liu Y, Xu Y H et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 379, 294-299(2023).

    [106] Rubin N A, D’Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 365, eaax1839(2019).

    [107] Arbabi E, Kamali S M, Arbabi A et al. Full-Stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 5, 3132-3140(2018).

    [108] Huang Z R, Zheng Y Q, Li J H et al. High-resolution metalens imaging polarimetry[J]. Nano Letters, 23, 10991-10997(2023).

    [109] Hu Y Q, Li L, Wang Y J et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 20, 994-1002(2020).

    [110] Wang B, Dong F L, Li Q T et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 16, 5235-5240(2016).

    [111] Wei Q S, Sain B, Wang Y T et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, 19, 8964-8971(2019).

    [112] Hu Y Q, Luo X H, Chen Y Q et al. 3D-integrated metasurfaces for full-colour holography[J]. Light: Science & Applications, 8, 86(2019).

    [113] Wan W W, Gao J E, Yang X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 10, 10671-10680(2016).

    [114] Li X, Chen L W, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2, e1601102(2016).

    [115] Zang W B, Yuan Q, Chen R et al. Chromatic dispersion manipulation based on metalenses[J]. Advanced Materials, 32, 1904935(2020).

    [116] Chen Q K, Liu Y T, Lei Y Y et al. Recent progress on achromatic metalenses (invited review)[J]. Progress in Electromagnetics Research, 173, 9-23(2022).

    [117] Hu Y Q, Jiang Y T, Zhang Y et al. Asymptotic dispersion engineering for ultra-broadband meta-optics[J]. Nature Communications, 14, 6649(2023).

    [118] Chen W T, Zhu A Y, Sisler J et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 10, 355(2019).

    [119] Chen Q K, Gao Y B, Pian S J et al. Theory and fundamental limit of quasiachromatic metalens by phase delay extension[J]. Physical Review Letters, 131, 193801(2023).

    [120] Kamali S M, Arbabi E, Arbabi A et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 7, 041056(2017).

    [121] Lin Z, Groever B, Capasso F et al. Topology-optimized multilayered metaoptics[J]. Physical Review Applied, 9, 044030(2018).

    [122] Aieta F, Genevet P, Kats M et al. Aberrations of flat lenses and aplanatic metasurfaces[J]. Optics Express, 21, 31530-31539(2013).

    [123] Kalvach A, Szabó Z. Aberration-free flat lens design for a wide range of incident angles[J]. Journal of the Optical Society of America B, 33, A66-A71(2016).

    [124] Liang H W, Martins A, Borges B H V et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs[J]. Optica, 6, 1461-1470(2019).

    [125] Arbabi A, Arbabi E, Kamali S M et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nature Communications, 7, 13682(2016).

    [126] Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Letters, 17, 4902-4907(2017).

    [127] Shalaginov M Y, An S S, Yang F et al. Single-element diffraction-limited fisheye metalens[J]. Nano Letters, 20, 7429-7437(2020).

    [128] Chen W T, Zhu A Y, Capasso F. Flat optics with dispersion-engineered metasurfaces[J]. Nature Reviews Materials, 5, 604-620(2020).

    [129] Pu M B, Li X, Guo Y H et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing[J]. Optics Express, 25, 31471-31477(2017).

    [130] Martins A, Li K Z, Li J T et al. On metalenses with arbitrarily wide field of view[J]. ACS Photonics, 7, 2073-2079(2020).

    [131] Lassalle E, Mass T W W, Eschimese D et al. Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection[J]. ACS Photonics, 8, 1457-1468(2021).

    [132] Xu B B, Li H M, Gao S L et al. Metalens-integrated compact imaging devices for wide-field microscopy[J]. Advanced Photonics, 2, 066004(2020).

    [133] Chen J, Ye X, Gao S L et al. Planar wide-angle-imaging camera enabled by metalens array[J]. Optica, 9, 431-437(2022).

    [134] Martins A, Li J T, Borges B H V et al. Fundamental limits and design principles of doublet metalenses[J]. Nanophotonics, 11, 1187-1194(2022).

    [135] Mei F, Qu G Y, Sha X B et al. Cascaded metasurfaces for high-purity vortex generation[J]. Nature Communications, 14, 6410(2023).

    [136] He C, Zhao D, Fan F et al. Pluggable multitask diffractive neural networks based on cascaded metasurfaces[J]. Opto-Electronic Advances, 7, 230005(2024).

    [137] Georgi P, Wei Q S, Sain B et al. Optical secret sharing with cascaded metasurface holography[J]. Science Advances, 7, eabf9718(2021).

    [138] Arbabi A, Arbabi E, Horie Y et al. Planar metasurface retroreflector[J]. Nature Photonics, 11, 415-420(2017).

    [139] Zhou Y, Kravchenko I I, Wang H et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters, 18, 7529-7537(2018).

    [140] Avayu O, Almeida E, Prior Y et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 8, 14992(2017).

    [141] Zhou Y, Kravchenko I I, Wang H et al. Multifunctional metaoptics based on bilayer metasurfaces[J]. Light: Science & Applications, 8, 80(2019).

    [142] Mansouree M, Kwon H, Arbabi E et al. Multifunctional 2.5D metastructures enabled by adjoint optimization[J]. Optica, 7, 77-84(2020).

    [143] Díaz-Rubio A, Asadchy V S, Elsakka A et al. From the generalized reflection law to the realization of perfect anomalous reflectors[J]. Science Advances, 3, e1602714(2017).

    [144] Kwon H, Sounas D, Cordaro A et al. Nonlocal metasurfaces for optical signal processing[J]. Physical Review Letters, 121, 173004(2018).

    [145] Achouri K, Tiukuvaara V, Martin O J F. Spatial symmetries in nonlocal multipolar metasurfaces[J]. Advanced Photonics, 5, 046001(2023).

    [146] Zhou Y, Zheng H Y, Kravchenko I I et al. Flat optics for image differentiation[J]. Nature Photonics, 14, 316-323(2020).

    [147] Pan D P, Wan L, Ouyang M et al. Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum[J]. Photonics Research, 9, 1758-1766(2021).

    [148] Tanriover I, Dereshgi S A, Aydin K. Metasurface enabled broadband all optical edge detection in visible frequencies[J]. Nature Communications, 14, 6484(2023).

    [149] Guo C, Wang H W, Fan S H. Squeeze free space with nonlocal flat optics[J]. Optica, 7, 1133-1138(2020).

    [150] Chen A B, Monticone F. Dielectric nonlocal metasurfaces for fully solid-state ultrathin optical systems[J]. ACS Photonics, 8, 1439-1447(2021).

    [151] Malek S C, Overvig A C, Alù A et al. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces[J]. Light: Science & Applications, 11, 246(2022).

    [152] Overvig A C, Mann S A, Alù A. Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions[J]. Physical Review X, 11, 021050(2021).

    [153] Goodman J W[M]. Introduction to Fourier optics(2004).

    [154] Shastri K, Monticone F. Nonlocal flat optics[J]. Nature Photonics, 17, 36-47(2023).

    [155] Overvig A C, Malek S C, Yu N F. Multifunctional nonlocal metasurfaces[J]. Physical Review Letters, 125, 017402(2020).

    [156] Song J H, van de Groep J, Kim S J et al. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking[J]. Nature Nanotechnology, 16, 1224-1230(2021).

    [157] Jin L, Dong Z G, Mei S T et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms[J]. Nano Letters, 18, 8016-8024(2018).

    [158] Yang Y, Seong J, Choi M et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform[J]. Light: Science & Applications, 12, 152(2023).

    [159] Li S Y, Hsu C W. Thickness bound for nonlocal wide-field-of-view metalenses[J]. Light: Science & Applications, 11, 338(2022).

    [160] Miller D A B. Why optics needs thickness[J]. Science, 379, 41-45(2023).

    [161] Arbabi A, Faraon A. Advances in optical metalenses[J]. Nature Photonics, 17, 16-25(2023).

    [162] Ma W, Xu Y H, Xiong B et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning[J]. Advanced Materials, 34, e2110022(2022).

    [163] Mansouree M, McClung A, Samudrala S et al. Large-scale parametrized metasurface design using adjoint optimization[J]. ACS Photonics, 8, 455-463(2021).

    [164] She A L, Zhang S Y, Shian S et al. Large area metalenses: design, characterization, and mass manufacturing[J]. Optics Express, 26, 1573-1585(2018).

    [165] Skarda J, Trivedi R, Su L et al. Low-overhead distribution strategy for simulation and optimization of large-area metasurfaces[J]. NPJ Computational Materials, 8, 78(2022).

    [166] Phan T, Sell D, Wang E W et al. High-efficiency, large-area, topology-optimized metasurfaces[J]. Light: Science & Applications, 8, 48(2019).

    [167] Hughes T W, Minkov M, Liu V et al. A perspective on the pathway toward full wave simulation of large area metalenses[J]. Applied Physics Letters, 119, 150502(2021).

    [168] Jiang J Q, Lupoiu R, Wang E W et al. MetaNet: a new paradigm for data sharing in photonics research[J]. Optics Express, 28, 13670-13681(2020).

    [169] Sell D, Yang J J, Doshay S et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 17, 3752-3757(2017).

    [170] Jiang J Q, Sell D, Hoyer S et al. Free-form diffractive metagrating design based on generative adversarial networks[J]. ACS Nano, 13, 8872-8878(2019).

    [171] An S S, Zheng B W, Shalaginov M Y et al. Deep convolutional neural networks to predict mutual coupling effects in metasurfaces[J]. Advanced Optical Materials, 10, 2102113(2022).

    [172] Jia W H, Gao C X, Zhao Y M et al. Intracavity spatiotemporal metasurfaces[J]. Advanced Photonics, 5, 026002(2023).

    [173] Xu Q, Su X Q, Zhang X Q et al. Mechanically reprogrammable Pancharatnam-Berry metasurface for microwaves[J]. Advanced Photonics, 4, 016002(2022).

    [174] Kim J, Seong J, Yang Y et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J]. Advanced Photonics, 4, 024001(2022).

    [175] Zhang X G, Sun Y L, Zhu B C et al. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 4, 025001(2022).

    [176] Ma Q, Liu C, Xiao Q et al. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 1, R01(2022).

    [177] Zhang J X, Li P X, Cheung R C C et al. Generation of time-varying orbital angular momentum beams with space-time-coding digital metasurface[J]. Advanced Photonics, 5, 036001(2023).

    [178] Frese D, Wei Q S, Wang Y T et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces[J]. Nano Letters, 19, 3976-3980(2019).

    [179] Leng B R, Chen M G, Tsai D P. Design, fabrication, and imaging of meta-devices[J]. Acta Optica Sinica, 43, 0822001(2023).

    [180] Zhang C, Xiao S M. Progress in CMOS-compatible fabrication process of dielectric metasurfaces[J]. Acta Optica Sinica, 43, 0822003(2023).

    [181] Shkondin E, Takayama O, Lindhard J M et al. Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 34, 031605(2016).

    Tools

    Get Citation

    Copy Citation Text

    Yaoguang Ma, Yubin Gao. Metasurfaces: Design Principles and Application Challenges (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0103001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Nov. 14, 2023

    Accepted: Dec. 12, 2023

    Published Online: Jan. 24, 2024

    The Author Email: Ma Yaoguang (mayaoguang@zju.edu.cn)

    DOI:10.3788/CJL231405

    CSTR:32183.14.CJL231405

    Topics