Chinese Journal of Lasers, Volume. 51, Issue 4, 0402303(2024)

Method and Process of Selective Laser Melting Forming Low‐Angle Support‐Free Structures (Invited)

Weinan Hu1,3, Ying Feng3,4, Di Wang1、*, Xingchen Yan2, Menglong Jiang1, Gang Jin1, Chao Yang1, Yongqiang Yang1, Jiehua Wu5, and Simin Chen5
Author Affiliations
  • 1School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, Guangdong , China
  • 2Institute of New Materials,Guangdong Academy of Sciences, Guangzhou 510075, Guangdong , China
  • 3School of Mechanical Engineering, Guangzhou City University of Technology, Guangzhou 510800, Guangdong , China
  • 4School of Innovative Design, City University of Macao, Macao999078, China
  • 5Shenzhen Jinshi 3D Printing Technology Co., Ltd., Shenzhen 518107, Guangdong , China
  • show less
    References(31)

    [1] Guo M, Dai Y F, Huang B D. Application status and development of laser powder bed fusion technology in typical electromechanical aviation products[J]. Chinese Journal of Lasers, 50, 1602304(2023).

    [2] Liang J Y, Zhang W Y, Liu W et al. Laser additive manufacturing and heat transfer performance measurement of lattice structure heat exchanger[J]. Chinese Journal of Lasers, 50, 0402014(2023).

    [3] Bremen S, Meiners W, Diatlov A. Selective laser melting: a manufacturing technology for the future[J]. Laser Technik Journal, 9, 33-38(2012).

    [4] Wong M, Tsopanos S, Sutcliffe C J et al. Selective laser melting of heat transfer devices[J]. Rapid Prototyping Journal, 13, 291-297(2007).

    [5] Ma Z L, Gao M D, Guo K et al. Analysis and optimization of energy consumption for multi-part printing using selective laser melting and considering the support structure[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 693-707(2023).

    [6] Yi Y L, Cheng Y Y, Jia C Z et al. Performance differences of support structures for parts formed by selective laser melting[J]. Chinese Journal of Lasers, 50, 1602306(2023).

    [7] Wang D, Mai S Z, Xiao D M et al. Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM[J]. The International Journal of Advanced Manufacturing Technology, 86, 781-792(2016).

    [8] Yang Y Q, Lu J B, Wang D et al. A study of 316L stainless steel non-horizontal overhanging surface in selective laser melting[J]. Materials Science and Technology, 19, 94-99(2011).

    [9] Feng S C, Kamat A M, Sabooni S et al. Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions[J]. Virtual and Physical Prototyping, 16, S66-S84(2021).

    [10] Le K Q, Wong C H, Chua K H G et al. Discontinuity of overhanging melt track in selective laser melting process[J]. International Journal of Heat and Mass Transfer, 162, 120284(2020).

    [11] Babu J J, Mehrpouya M, Pijper T C et al. An experimental study of downfacing surfaces in selective laser melting[J]. Advanced Engineering Materials, 24, 2101562(2022).

    [12] Han J T, Duan W P, Mao Y Y et al. Comparison of laser power and scan speed in SLM[J]. ISIJ International, 62, 200-208(2022).

    [13] Yang T, Liu T T, Liao W H et al. Effect of processing parameters on overhanging surface roughness during laser powder bed fusion of AlSi10Mg[J]. Journal of Manufacturing Processes, 61, 440-453(2021).

    [14] Bian P Y, Xu K W, Yin E H et al. Effect of scanning strategy on thermodynamics evolution of selective laser melting[J]. Laser & Optoelectronics Progress, 60, 0914001(2023).

    [15] Liu T T, Zhang C D, Liao W H et al. Experimental analysis of pool behavior in overhang structure fabricated by selective laser melting[J]. Chinese Journal of Lasers, 43, 1202004(2016).

    [16] Su C J, Cao J Z, Li G Z et al. Experimental investigation on the factors affecting the quality of titanium alloy overhang via selective laser melting forming[J]. The International Journal of Advanced Manufacturing Technology, 128, 3391-3402(2023).

    [17] Vasileska E, Demir A G, Colosimo B M et al. A novel paradigm for feedback control in LPBF: layer-wise correction for overhang structures[J]. Advances in Manufacturing, 10, 326-344(2022).

    [18] Yuan Z J, Chen X D. Novel approach for fabricating horizontal overhanging structures in selective laser melting[J]. Journal of Manufacturing Processes, 85, 793-801(2023).

    [19] Jiang J, Chen J, Ren Z et al. The influence of process parameters and scanning strategy on lower surface quality of TA15 parts fabricated by selective laser melting[J]. Metals, 10, 1228(2020).

    [20] Mao Y Y, Lü X F, Shen X D. A study on the surface quality of selective laser melted cylindrical- and parallelepipedic-shaped inner structure[J]. Materials, 16, 4649(2023).

    [21] Liu H, Cai G S, Xin Y X. Effect of processing parameters on the quality of overhanging round hole structure in AlSi10Mg selective laser melting[J]. Materials Today Communications, 37, 107464(2023).

    [22] Xie Z W, Wu M P, Shi X J et al. Study on the forming precision optimization of built-in flow channel structure manufactured by selective laser melting[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 237, 1048-1059(2023).

    [23] Zhu X G, Dong A P, Cheng L Y et al. Study on AlSi10Mg alloy with complex flow channels by laser powder bed fusion[J]. Laser & Optoelectronics Progress, 60, 0714006(2023).

    [24] Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods[J]. Materials & Design, 30, 2903-2910(2009).

    [25] Wang D, Yang Y Q, Zhang M H et al. Study on SLM fabrication of precision metal parts with overhanging structures[C], 222-225(2013).

    [26] Scriven L E, Sternling C V. The Marangoni effects[J]. Nature, 187, 186-188(1960).

    [27] Zhu X G, Dong A P, Wang L F et al. Influence of inclination angle, shape and size of the flow channels on the AlSi10Mg complex products fabricated by selective laser melting[J]. Journal of Manufacturing Processes, 83, 157-171(2022).

    [28] Wen S F, Li S, Wei Q S et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology, 214, 2660-2667(2014).

    [29] Vrancken B, Cain V, Knutsen R et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 87, 29-32(2014).

    [30] Zhao C F. Study on the laser-selective melting printing quality of overhanging structures and their cutting properties[D](2021).

    [31] He H W. Process constraint study and configuration design of SLM based self-supporting overhanging structure[D](2019).

    Tools

    Get Citation

    Copy Citation Text

    Weinan Hu, Ying Feng, Di Wang, Xingchen Yan, Menglong Jiang, Gang Jin, Chao Yang, Yongqiang Yang, Jiehua Wu, Simin Chen. Method and Process of Selective Laser Melting Forming Low‐Angle Support‐Free Structures (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402303

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Oct. 16, 2023

    Accepted: Jan. 10, 2024

    Published Online: Feb. 27, 2024

    The Author Email: Wang Di (mewdlaser@scut.edu.cn)

    DOI:10.3788/CJL231286

    CSTR:32183.14.CJL231286

    Topics