Laser Journal, Volume. 46, Issue 2, 141(2025)
Transformer-based domain adaptation classification for hyperspectral images
[3] [3] Peng J, Huang Y, Sun W, et al. Domain adaptation in remote sensing image classification: A survey[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9842-9859.
[4] [4] Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks[C]//International conference on machine learning. PMLR, 2015: 97-105.
[5] [5] Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks[J]. Journal of machine learning research, 2016, 17(59): 1-35.
[6] [6] Deng B, Jia S, Shi D. Deep metric learning-based feature embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(2): 1422-1435.
[7] [7] Liu Z, Ma L, Du Q. Class-wise distribution adaptation for unsupervised classification of hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(1): 508-521.
[8] [8] Fang Z, Yang Y, Li Z, et al. Confident learning-based domain adaptation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16.
[9] [9] Huang Y, Peng J, Sun W, et al. Two-branch attention adversarial domain adaptation network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
[10] [10] Li Z, Xu Q, Ma L, et al. Supervised contrastive learningbased unsupervised domain adaptation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023: 1-17.
[11] [11] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 5998-6008.
[12] [12] Kenton J D M W C, Toutanova L K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of NAACL-HLT. 2019: 4171-4186.
[13] [13] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]//International Conference on Learning Representations. 2021: 1-21.
[14] [14] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 10012-10022.
[15] [15] Arnab A, Dehghani M, Heigold G, et al. Vivit: A video vision transformer[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 6836-6846.
[16] [16] Hong D, Han Z, Yao J, et al. SpectralFormer: Rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-15.
[17] [17] Tu B, Liao X, Li Q, et al. Local semantic feature aggregation-based transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[18] [18] Roy S K, Deria A, Shah C, et al. Spectral-spatial morphological attention transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15.
Get Citation
Copy Citation Text
HE Wenqiang, LI Zhaokui, FANG Zhuoqun. Transformer-based domain adaptation classification for hyperspectral images[J]. Laser Journal, 2025, 46(2): 141
Category:
Received: Sep. 21, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: LI Zhaokui (lzk@sau.edu.cn)