Infrared and Laser Engineering, Volume. 51, Issue 8, 20220256(2022)
Wavefront shaping technology based on digital optical phase conjugation (invited)
[1] Ntziachristos V, Ripoll J, Wang L V, et al. Looking and listening to light: The evolution of whole-body photonic imaging[J]. Nature Biotechnology, 23, 313-320(2005).
[2] [2] Wang L V, Wu H. Biomedical Optics: Principles Imaging[M]. New Yk: John Wiley & Sons, 2012.
[3] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).
[4] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).
[5] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 23, 12189-12206(2015).
[6] Conkey D B, Brown A N, Caravaca-Aguirre A M, et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 20, 4840-4849(2012).
[7] Huang H L, Chen Z Y, Sun C Z, et al. Light focusing through scattering media by particle swarm optimization[J]. Chinese Physics Letters, 32, 104202(2015).
[8] Fang L, Zuo H, Yang Z, et al. Particle swarm optimization to focus coherent light through disordered media[J]. Applied Physics B, 124, 1-9(2018).
[9] Fang L, Zhang X, Zuo H, et al. Focusing light through random scattering media by four-element division algorithm[J]. Optics Communications, 407, 301-310(2018).
[10] Wu Y, Zhang X, Yan H. Focusing light through scattering media using the harmony search algorithm for phase optimization of wavefront shaping[J]. Optik, 158, 558-564(2018).
[11] Wu Z, Luo J, Feng Y, et al. Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm[J]. Optics Express, 27, 5570-5580(2019).
[12] Yang J, He Q, Liu L, et al. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device[J]. Light: Science & Applications, 10, 149(2021).
[13] Zhao Y, He Q, Li S, et al. Gradient-assisted focusing light through scattering media[J]. Optics Letters, 46, 1518-1521(2021).
[14] Woo C M, Li H, Zhao Q, et al. Dynamic mutation enhanced particle swarm optimization for optical wavefront shaping[J]. Optics Express, 29, 18420-18426(2021).
[15] Zhao Y, Ding Y. Multi-point controllable wavefront shaping based on superpixel method[J]. Acta Photonica Sinica, 50, 0929002(2021).
[16] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).
[17] Popoff S M, Lerosey G, Fink M, et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).
[18] Chaigne T, Katz O, Boccara A C, et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 8, 58-64(2014).
[19] Kim M, Choi W, Choi Y, et al. Transmission matrix of a scattering medium and its applications in biophotonics[J]. Optics Express, 23, 12648-12668(2015).
[20] Andreoli D, Volpe G, Popoff S, et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 5, 1-8(2015).
[21] Xu J, Ruan H, Liu Y, et al. Focusing light through scattering media by transmission matrix inversion[J]. Optics Express, 25, 27234-27246(2017).
[22] Wang J, Li W, Liu J, et al. Measuring optical transmission matrix based on three steps phase shift interferometry and focusing[J]. Chinese Journal of Lasers, 45, 0804007(2018).
[23] Drémeau A, Liutkus A, Martina D, et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques[J]. Optics Express, 23, 11898-11911(2015).
[24] Zhao T, Deng L, Wang W, et al. Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber[J]. Optics Express, 26, 20368-20378(2018).
[25] N’Gom M, Norris T B, Michielssen E, et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system[J]. Optics Letters, 43, 419-422(2018).
[26] Deng L, Yan J D, Elson D S, et al. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system[J]. Optics Express, 26, 18436-18447(2018).
[27] Huang G, Wu D, Luo J, et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter[J]. Optics Express, 28, 9487-9500(2020).
[28] Huang G, Wu D, Luo J, et al. Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices[J]. Photonics Research, 9, 34-42(2021).
[29] Wang Z, Wu D, Huang G, et al. Feedback-assisted transmission matrix measurement of a multimode fiber in a referenceless system[J]. Optics Letters, 46, 5542-5545(2021).
[30] Yariv A, AuYeung J, Fekete D, et al. Image phase compensation and real-time holography by four-wave mixing in optical fibers[J]. Applied Physics Letters, 32, 635-637(1978).
[31] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).
[32] Li C. Optical phase conjugation (OPC) for focusing light through/inside biological tissue[J]. Infrared and Laser Engineering, 48, 0702001(2019).
[33] Shen Y, Liu Y, Ma C, et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 21, 085001(2016).
[34] Shang Q. Optical phase conjugation and four-wave mixing[J]. Optics & Optoelectronic Technology, 1, 9-11(2003).
[35] Liu Y, Lai P, Ma C, et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 6, 1-9(2015).
[36] He G S. Optical phase conjugation: principles, techniques, and applications[J]. Progress in Quantum Electronics, 26, 131-191(2002).
[37] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).
[38] Jang M, Ruan H, Zhou H, et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 22, 14054-14071(2014).
[39] Azimipour M, Atry F, Pashaie R. Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials[J]. Applied Optics, 55, 2873-2880(2016).
[40] Hemphill A S, Shen Y, Hwang J, et al. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials[J]. Journal of Biomedical Optics, 24, 031004(2018).
[41] Yu Y W, Sun C C, Liu X C, et al. Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium[J]. OSA Continuum, 2, 703-714(2019).
[42] Mididoddi C K, Lennon R A, Li S, et al. High-fidelity off-axis digital optical phase conjugation with transmission matrix assisted calibration[J]. Optics Express, 28, 34692-34705(2020).
[43] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015).
[44] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 101, 081108(2012).
[45] Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optics Express, 18, 20723-20731(2010).
[46] Hsieh C L, Pu Y, Grange R, et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 18, 12283-12290(2010).
[47] Ruan H, Haber T, Liu Y, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 4, 1337-1343(2017).
[48] Yu Z, Huangfu J, Zhao F, et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 8, 1-8(2018).
[49] Yang J, Li L, Shemetov A A, et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star[J]. Science Advances, 5, eaay1211(2019).
[50] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 8, 931-936(2014).
[51] Zhou E H, Ruan H, Yang C, et al. Focusing on moving targets through scattering samples[J]. Optica, 1, 227-232(2014).
[52] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).
[53] Wang Y M, Judkewitz B, DiMarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 3, 1-8(2012).
[54] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation[J]. Nature Photonics, 6, 657-661(2012).
[55] Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy[J]. Scientific Reports, 2, 1-4(2012).
[56] Ruan H, Jang M, Judkewitz B, et al. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode[J]. Scientific Reports, 4, 1-7(2014).
[57] Suzuki Y, Tay J W, Yang Q, et al. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation[J]. Optics Letters, 39, 3441-3444(2014).
[58] Wang J, Liang H, Luo J, et al. Modeling of iterative time-reversed ultrasonically encoded optical focusing in a reflection mode[J]. Optics Express, 29, 30961-30977(2021).
[59] Judkewitz B, Wang Y M, Horstmeyer R, et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 7, 300-305(2013).
[60] Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded (TRUME) light[J]. arXiv preprint arXiv, 1506.05190(2015).
[61] Wang D, Zhou E H, Brake J, et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2, 728-735(2015).
[62] Liu Y, Ma C, Shen Y, et al. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media[J]. Optics Letters, 41, 1321-1324(2016).
[63] Hemphill A S, Shen Y, Liu Y, et al. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping[J]. Applied Physics Letters, 111, 221109(2017).
[64] Liu Y, Ma C, Shen Y, et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 4, 280-288(2017).
[65] Lai P, Xu X, Liu H, et al. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media[J]. Journal of Biomedical Optics, 16, 080505(2011).
[66] Ruan H, Brake J, Robinson J E, et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 3, eaao5520(2017).
[67] Zhong T, Qiu Z, Wu Y, et al. Optically Selective Neuron Stimulation with a Wavefront Shaping‐Empowered Multimode Fiber[J]. Advanced Photonics Research, 3, 2100231(2022).
[68] Liu Y, Shen Y, Ruan H, et al. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses[J]. Journal of Biomedical Optics, 23, 010501(2018).
[69] Jang M, Ruan H, Vellekoop I M, et al. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin[J]. Biomedical Optics Express, 6, 72-85(2015).
[70] Jang M, Yang C, Vellekoop I M. Optical phase conjugation with less than a photon per degree of freedom[J]. Physical Review Letters, 118, 093902(2017).
[71] Ma C, Di J, Li Y, et al. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation[J]. Applied Physics Express, 11, 062501(2018).
[72] Morales-Delgado E E, Farahi S, Papadopoulos I N, et al. Delivery of focused short pulses through a multimode fiber[J]. Optics Express, 23, 9109-9120(2015).
[73] Yang J, Shen Y, Liu Y, et al. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation[J]. Applied Physics Letters, 111, 201108(2017).
[74] Shen Y, Liu Y, Ma C, et al. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media[J]. Optica, 4, 97-102(2017).
[75] Ma C, Di J, Zhang Y, et al. Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation[J]. Optics Letters, 43, 3333-3336(2018).
[76] Büttner L, Thümmler M, Czarske J. Velocity measurements with structured light transmitted through a multimode optical fiber using digital optical phase conjugation[J]. Optics Express, 28, 8064-8075(2020).
[77] Cheng Z, Wang L V. Focusing light into scattering media with ultrasound-induced field perturbation[J]. Light: Science & Applications, 10, 159(2021).
[78] Fiolka R, Si K, Cui M. Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation[J]. Optics Express, 20, 24827-24834(2012).
[79] Shen Y, Liu Y, Ma C, et al. Focusing light through scattering media by full-polarization digital optical phase conjugation[J]. Optics Letters, 41, 1130-1133(2016).
[80] Jang M, Ruan H, Judkewitz B, et al. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique[J]. Optics Express, 22, 5787-5807(2014).
[81] Woo C M, Zhao Q, Zhong T, et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping[J]. APL Photonics, 7, 046109(2022).
Get Citation
Copy Citation Text
Yuecheng Shen, Hanpeng Liang, Jiayu Zhao, Jiawei Luo. Wavefront shaping technology based on digital optical phase conjugation (invited)[J]. Infrared and Laser Engineering, 2022, 51(8): 20220256
Category: Special issue——Scattering imaging and non-line-of-sight imaging
Received: Jan. 20, 2022
Accepted: --
Published Online: Jan. 9, 2023
The Author Email: