Chinese Journal of Lasers, Volume. 48, Issue 19, 1906002(2021)
Progress in Sensitivity Enhancement for Optical Fibre Surface Plasmon Resonance Sensing
[1] Sharma A K, Jha R, Gupta B D. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review[J]. IEEE Sensors Journal, 7, 1118-1129(2007).
[2] Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical and Bioanalytical Chemistry, 407, 3883-3897(2015).
[3] Klantsataya E, Jia P P, Ebendorff-Heidepriem H et al. Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends[J]. Sensors, 17, E12(2016).
[4] Lee S, Song H, Ahn H et al. Fiber-optic localized surface plasmon resonance sensors based on nanomaterials[J]. Sensors, 21, 819(2021).
[5] Zhao Y, Tong R J, Xia F et al. Current status of optical fiber biosensor based on surface plasmon resonance[J]. Biosensors and Bioelectronics, 142, 111505(2019).
[6] Shalabney A, Abdulhalim I. Sensitivity-enhancement methods for surface plasmon sensors[J]. Laser & Photonics Reviews, 5, 571-606(2011).
[7] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Proceedings of the Physical Society of London, 18, 269-275(1902).
[8] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 58, 267-297(2007).
[9] Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)[J]. Journal of the Optical Society of America, 31, 213-222(1941).
[10] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift Für Physik A Hadrons and Nuclei, 216, 398-410(1968).
[11] Kretschmann E, Raether H. Notizen: radiative decay of non radiative surface plasmons excited by light[J]. Zeitschrift Für Naturforschung A, 23, 2135-2136(1968).
[12] Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 12, 213-220(1993).
[14] Lin H Y, Tsai W H, Tsao Y C et al. Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light[J]. Applied Optics, 46, 800-806(2007).
[15] Chen Y Z, Yu Y Q, Li X J et al. Experimental comparison of fiber-optic surface plasmon resonance sensors with multi metal layers and single silver or gold layer[J]. Plasmonics, 10, 1801-1808(2015).
[16] Liu Y, Liu Q, Chen S et al. Surface plasmon resonance biosensor based on smart phone platforms[J]. Scientific Reports, 5, 12864(2015).
[17] Moayyed H, Leite I T, Coelho L et al. Analysis of a plasmonic based optical fiber optrode with phase interrogation[J]. Photonic Sensors, 6, 221-233(2016).
[18] Moayyed H, Leite I T, Coelho L et al. Phase interrogated plasmonic optical fiber optrode with bimetallic layers[J]. Proceedings of SPIE, 9634, 96346B(2015).
[20] Sharma A K, Mohr G J. On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations[J]. Journal of Physics D: Applied Physics, 41, 055106(2008).
[21] Leung A, Shankar P M, Mutharasan R. A review of fiber-optic biosensors[J]. Sensors and Actuators B: Chemical, 125, 688-703(2007).
[22] Wang S F, Chiu M H, Chang R S. Numerical simulation of a D-type optical fiber sensor based on the Kretchmann's configuration and heterodyne interferometry[J]. Sensors and Actuators B: Chemical, 114, 120-126(2006).
[23] Cennamo N, Pasquardini L, Arcadio F et al. D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range[J]. Scientific Reports, 9, 18740(2019).
[24] Gupta B D, Dodeja H, Tomar A K. Fibre-optic evanescent field absorption sensor based on a U-shaped probe[J]. Optical and Quantum Electronics, 28, 1629-1639(1996).
[25] Verma R K, Gupta B D. Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement[J]. Journal of Physics D: Applied Physics, 41, 095106(2008).
[26] Paul D, Dutta S, Biswas R. LSPR enhanced gasoline sensing with a U-bent optical fiber[J]. Journal of Physics D: Applied Physics, 49, 305104(2016).
[27] Sai V V R, Kundu T, Mukherji S. Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor[J]. Biosensors and Bioelectronics, 24, 2804-2809(2009).
[28] Verma R K, Sharma A K, Gupta B D. Modeling of tapered fiber-optic surface plasmon resonance sensor with enhanced sensitivity[J]. IEEE Photonics Technology Letters, 19, 1786-1788(2007).
[29] Verma R K, Sharma A K, Gupta B D. Surface plasmon resonance based tapered fiber optic sensor with different taper profiles[J]. Optics Communications, 281, 1486-1491(2008).
[30] Zhu W J, Huang Q, Wang Y et al. Enhanced sensitivity of heterocore structure surface plasmon resonance sensors based on local microstructures[J]. Optical Engineering, 57, 076105(2018).
[31] Yang J. Experimental research for corrosion type optical fiber sensor based on the structure of SMS[D], 14-27(2014).
[33] Wang Q, Kong L X, Dang Y L et al. High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer[J]. Sensors and Actuators B: Chemical, 225, 213-220(2016).
[34] Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Optics Express, 14, 11616-11621(2006).
[35] Rifat A A, Ahmed R, Mahdiraji G A et al. Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR[J]. IEEE Sensors Journal, 17, 2776-2783(2017).
[36] Suzuki H, Sugimoto M, Matsui Y et al. Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor[J]. Sensors and Actuators B: Chemical, 132, 26-33(2008).
[37] Kang X F, Cheng G J, Dong S J. A novel electrochemical SPR biosensor[J]. Electrochemistry Communications, 3, 489-493(2001).
[38] Mitsushio M, Miyashita K, de Higo M. Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al[J]. Sensors and Actuators A: Physical, 125, 296-303(2006).
[39] Wu S Y, Ho H P. Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer[C]. //Proceedings 2002 IEEE Hong Kong Electron Devices Meeting (Cat. No.02TH8616), June 22, 2002, Hong Kong, China., 63-68(2002).
[40] Yuan X C, Ong B H, Tan Y G et al. Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers[J]. Journal of Optics A: Pure and Applied Optics, 8, 959-963(2006).
[41] Law W C, Yong K T, Baev A et al. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement[J]. ACS Nano, 5, 4858-4864(2011).
[42] Shi H J, Che J J, Chen Z H et al. Effect of Au NPs of different sizes on sensitivity of SPR-based quantification method[J]. Military Medical Sciences, 36, 280-284, 288(2012).
[45] Tabassum R, Gupta B D. Fiber optic manganese ions sensor using SPR and nanocomposite of ZnO-polypyrrole[J]. Sensors and Actuators B: Chemical, 220, 903-909(2015).
[46] Shukla S, Sharma N K, Sajal V. Theoretical analysis of surface plasmon resonance based fiber optic sensor using ITO and ZnO thin films[J]. Optical and Quantum Electronics, 48, 1-9(2015).
[47] Tanaka A, Sakaguchi S, Hashimoto K et al. Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light[J]. ACS Catalysis, 3, 79-85(2013).
[48] Singh S, Mishra S K, Gupta B D. Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides[J]. Sensors and Actuators A: Physical, 193, 136-140(2013).
[49] Rani M, Shukla S, Sharma N K et al. Theoretical study of nanocomposites based fiber optic SPR sensor[J]. Optics Communications, 313, 303-314(2014).
[50] Shukla S, Sharma N K, Sajal V. Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study[J]. Sensors and Actuators B: Chemical, 206, 463-470(2015).
[51] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[52] Wu L, Chu H S, Koh W S et al. Highly sensitive graphene biosensors based on surface plasmon resonance[J]. Optics Express, 18, 14395-14400(2010).
[53] Maharana P K, Jha R. Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance[J]. Sensors and Actuators B: Chemical, 169, 161-166(2012).
[54] Wei W, Nong J P, Zhu Y et al. Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor[J]. Plasmonics, 13, 483-491(2018).
[55] Zeng W Q. Research on molybdenum disulfide/graphene heterostructure modulation of surface plasmon[D], 1-7(2018).
[56] Maurya J B, Prajapati Y K, Singh V et al. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer[J]. Applied Physics A, 121, 525-533(2015).
[57] Luo Y H, Hu S Q, Wang H et al. Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer[J]. Optics Express, 26, 34250-34258(2018).
[58] Rahman M S, Anower M S, Abdulrazak L F. Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor[J]. Photonics and Nanostructures-Fundamentals and Applications, 35, 100711(2019).
[60] Liu X, Cao J, Li H et al. Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo[J]. ACS Nano, 7, 9384-9395(2013).
[64] Wan Y, Zhang D, Wang Y et al. Direct immobilisation of antibodies on a bioinspired architecture as a sensing platform[J]. Biosensors and Bioelectronics, 26, 2595-2600(2011).
[65] Wood J B, Szyndler M W, Halpern A R et al. Fabrication of DNA microarrays on polydopamine-modified gold thin films for SPR imaging measurements[J]. Langmuir, 29, 10868-10873(2013).
[66] Zeng J, Liang D K, Cao Z X. Study on a novel optical fiber temperature sensor based on surface plasmon resonance[J]. Chinese Journal of Lasers, 31, 838-842(2004).
[68] Sharma A K, Pattanaik H S, Mohr G J. On the temperature sensing capability of a fibre optic SPR mechanism based on bimetallic alloy nanoparticles[J]. Journal of Physics D: Applied Physics, 42, 045104(2009).
[69] Siddik A B, Hossain S, Paul A K et al. High sensitivity property of dual-core photonic crystal fiber temperature sensor based on surface plasmon resonance[J]. Sensing and Bio-Sensing Research, 29, 100350(2020).
[70] Liu H, Bai B B, Zhang Y Z et al. High-sensitivity temperature measurement based on SPR in gold-PDMS-coated photonic crystal fiber[J]. Chinese Journal of Lasers, 47, 0404003(2020).
[71] Hernáez M, Zamarreño C R, Matías I R et al. Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region[J]. Journal of Physics: Conference Series, 178, 012019(2009).
[72] Shao Y, Wang Y, Cao S Q et al. Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor[J]. Sensors, 18, 2029(2018).
[74] Jiang Z, Dong J, Hu S et al. High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid[J]. Optics Letters, 43, 4743-4746(2018).
[75] Chen Y F, Sun W T, Zhang Y X et al. Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer[J]. Nanomaterials, 9, 785(2019).
[76] Chen Q H, Han W Y, Kong X Y et al. Detection of solution refractive index variation based on optical fiber surface plasmon resonance[J]. Chinese Journal of Lasers, 47, 0804003(2020).
[77] Xiao G L, Zhang K F, Yang H Y et al. Refractive index sensor with double resonance peaks for D-type symmetric two-core photonic crystal fiber[J]. Acta Optica Sinica, 40, 1206001(2020).
[78] Lu C Y, Li Y P, Yuan Y F et al. Ultrasensitive biochemical detection by employing two-dimensional Ti3C2Tx MXene nanosheets[J]. Laser & Optoelectronics Progress, 57, 091601(2020).
[79] Verma R, Gupta B D. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan[J]. Food Chemistry, 166, 568-575(2015).
[81] Mishra S K, Tripathi S N, Choudhary V et al. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization[J]. Sensors and Actuators B: Chemical, 199, 190-200(2014).
[82] Kant R, Tabassum R, Gupta B D. Fiber optic SPR-based uric acid biosensor using uricase entrapped polyacrylamide gel[J]. IEEE Photonics Technology Letters, 28, 2050-2053(2016).
[83] Kant R, Tabassum R, Gupta B D. A highly sensitive and distinctly selective d-sorbitol biosensor using SDH enzyme entrapped Ta2O5 nanoflowers assembly coupled with fiber optic SPR[J]. Sensors and Actuators B: Chemical, 242, 810-817(2017).
[84] Usha S P, Shrivastav A M, Gupta B D. FO-SPR based dextrose sensor using Ag/ZnO nanorods/GOx for insulinoma detection[J]. Biosensors and Bioelectronics, 85, 986-995(2016).
[85] Arjmand M, Saghafifar H, Alijanianzadeh M et al. A sensitive tapered-fiber optic biosensor for the label-free detection of organophosphate pesticides[J]. Sensors and Actuators B: Chemical, 249, 523-532(2017).
[86] Saylan Y, Akgönüllü S, Çimen D et al. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides[J]. Sensors and Actuators B: Chemical, 241, 446-454(2017).
[87] Shrivastav A M, Mishra S K, Gupta B D. Fiber optic SPR sensor for the detection of melamine using molecular imprinting[J]. Sensors and Actuators B: Chemical, 212, 404-410(2015).
[88] Verma R, Gupta B D. Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting[J]. The Analyst, 138, 7254-7263(2013).
[89] Shrivastav A M, Usha S P, Gupta B D. A localized and propagating SPR, and molecular imprinting based fiber-optic ascorbic acid sensor using an in situpolymerized polyaniline-Ag nanocomposite[J]. Nanotechnology, 27, 345501(2016).
[90] Shrivastav A M, Usha S P, Gupta B D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting[J]. Biosensors and Bioelectronics, 79, 150-157(2016).
[91] Cennamo N, D’Agostino G, Pesavento M et al. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine[J]. Sensors and Actuators B: Chemical, 191, 529-536(2014).
[92] Shrivastav A M, Usha S P, Gupta B D. Highly sensitive and selective erythromycin nanosensor employing fiber optic SPR/ERY imprinted nanostructure: application in milk and honey[J]. Biosensors and Bioelectronics, 90, 516-524(2017).
[93] Masson J F. Surface plasmon resonance clinical biosensors for medical diagnostics[J]. ACS Sensors, 2, 16-30(2017).
[94] Daems D, Lu J, Delport F et al. Competitive inhibition assay for the detection of progesterone in dairy milk using a fiber optic SPR biosensor[J]. Analytica Chimica Acta, 950, 1-6(2017).
[95] Shi S, Wang L B, Wang A K et al. Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating[J]. Journal of Materials Chemistry C, 4, 7554-7562(2016).
[96] Lu J, Spasic D, Delport F et al. Immunoassay for detection of infliximab in whole blood using a fiber-optic surface plasmon resonance biosensor[J]. Analytical Chemistry, 89, 3664-3671(2017).
Get Citation
Copy Citation Text
Jinying Ma, Tiegen Liu, Junfeng Jiang, Kun Liu, Shuang Wang, Zhao Zhang, Jianying Jing. Progress in Sensitivity Enhancement for Optical Fibre Surface Plasmon Resonance Sensing[J]. Chinese Journal of Lasers, 2021, 48(19): 1906002
Category: fiber optics and optical communications
Received: Jul. 21, 2021
Accepted: Aug. 17, 2021
Published Online: Sep. 26, 2021
The Author Email: Ma Jinying (majinying@tju.edu.cn), Liu Tiegen (tgliu@tju.edu.cn)